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ABSTRACT
This paper focuses on the transition of automatic speaker ver-
ification systems from time delay neural networks (TDNN) to
ResNet-based networks. TDNN-based systems use a statistics
pooling layer to aggregate temporal information which is suit-
able for two-dimensional tensors. Even though ResNet-based
models produce three-dimensional tensors, they continue to
incorporate the statistics pooling layer. However, the reduc-
tion in spatial dimensions in ResNet due to convolution op-
erations, including the temporal axis, raises concerns about
temporal information loss and its compatibility with statistics
pooling. To address this, we introduce Temporal-Bottleneck
ResNet (TB-ResNet), a ResNet-based system that can utilize
the nature of statistics pooling more effectively by capturing
and retaining frame-level contexts through a temporal bottle-
neck configuration in its building blocks. The performance of
TB-ResNets outperforms the original ResNet counterparts on
VoxCeleb1, achieving a significant reduction in both the equal
error rate and the minimum detection cost function.

Index Terms— automatic speaker verification, TDNN,
ResNet, statistics pooling, deep learning

1. INTRODUCTION

Automatic speaker verification (ASV) is the task of verifying
the authenticity of a given test speech signal’s speaker iden-
tity against an enrolled speaker. In recent times, the architec-
ture of ASV systems has predominantly pivoted toward the
domain of deep neural networks. Among these, d-vector sys-
tems integrate fully-connected layers with maxout activations
[1], while x-vector systems adopt the time delay neural net-
work (TDNN) architecture [2, 3]. It is worth mentioning that
the underlying operation of TDNN is conceptually equivalent
to that of one-dimensional (1D) convolution, generating in-
termediate layer outputs having two-dimensional (2D) tensor
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shape. Meanwhile, TDNN-based models utilize a statistics
pooling layer with numerous studies incorporating attention
mechanisms [4, 5]. This layer is used as a means of aggregat-
ing frame-level features into temporal statistics such as mean
and standard deviation. A significant advancement in this di-
rection is ECAPA-TDNN [6], which leverages 1D squeeze-
excitation res2blocks and multi-layer feature aggregation to
overcome limitations associated with x-vector systems.

However, current research reveals a prominent shift to-
wards models incorporating 2D convolutional layers in ASV
systems, especially based on ResNet architectures [7]. In the
VoxCeleb Speaker Recognition Challenge 2022 [8], leading
teams in both Tracks 1 and 2 employed various ResNet vari-
ants [9, 10]. Similar to TDNN-based models, ResNet-based
models often retain the utilization of the temporal pooling
technique despite the distinct three-dimensional (3D) nature
of intermediate layer outputs. However, the customary reduc-
tion in spatial dimensions, including the temporal axis, within
ResNet-based models raises concerns regarding a potential
loss of temporal information, thereby casting doubt on its
compatibility with statistics pooling methods.

In light of these observations, this paper introduces
Temporal-Bottleneck ResNet (TB-ResNet), a novel ResNet-
based system that allows us to take advantage of statistics
pooling. Our proposed model is strategically designed to
capture and retain frame-level contexts by employing a tem-
poral bottleneck configuration within its building blocks, and
these blocks can be naturally inserted into existing ResNet
architecture. Eventually, the model enriches temporal infor-
mation resulting in more meaningful statistics through the
statistics pooling layer. Our novel TB-ResNet shows a re-
markable enhancement in both the equal error rate and the
minimum detection cost function compared to the original
ResNet counterparts on VoxCeleb1 test datasets.

2. BACKGROUND

We first describe a fundamental component in TDNN-based
ASV sytems: a statistics pooling method. TDNN-based mod-
els usually find frame-level features by retaining the num-
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ber of frames, and the features are aggregated by statistics
pooling across the time axis. Prior to aggregation, attention
mechanisms are typically used to assign attention weights to
individual frames, enhancing the quality of speaker embed-
dings. We illustrate the channel-dependent attentive statistics
pooling proposed in the paper [6]. Next, we describe the for-
mulation of residual blocks, which serve as the fundamental
constituents of the ResNet architecture [7]. In Section 3, we
adapt these residual blocks to suit our proposed model, aim-
ing to amplify the effectiveness of statistics pooling.

2.1. Attentive statistics pooling (ASP)

For a given input speech feature sequence {x1:T }, a TDNN-
based encoder generates the sequence of frame-level features
{h1:T } ⊆ RC of the same length. Before aggregating the
frames, the attention score vectors st is computed as follows:

st = W2 ReLU(W1ht + b1) + b2, t = 1, . . . , T. (1)

The learnable parameters W1 ∈ Rd×C and b1 ∈ Rd×1 are
employed for linear projection into a reduced d-dimensional
feature space (in our experiment, d = int(C/8)). The pro-
jected vector undergoes ReLU before being projected back
into the original C-dimensional feature space using parame-
ters W2 ∈ RC×d and b2 ∈ RC×1. Subsequently, attention
weights {αt,c}Tt=1 for each channel c are obtained by normal-
izing the scores {st}Tt=1 ⊆ RC×1 across the time dimension:

αt,c =
exp(st,c)∑T
i=1 exp(si,c)

, c = 1, . . . , C. (2)

The attention weights play a role in describing the contribu-
tion of both individual frames and channels towards the cre-
ation of speaker embeddings. In the absence of attention, the
weights are uniformly set to 1

T . Finally, {h1:T } is aggregated
into the weighted statistics µc and σc for each channel c:

µc =
T∑

t=1

αt,cht,c, σc =

√√√√ T∑
t=1

αt,ch2
t,c − µ2

c (3)

Afterwards, the concatenated vector [µ ; σ ] ∈ R2C is passed
through additional layers to yield the speaker embeddings.

2.2. Residual block (ResBlock)

The architecture of ResNet18 and ResNet34 is formed by
ResBlocks, each of which is formulated as follows:

y = ReLU(F (x) + I(x)) (4)

where x and y are the input and the output of a ResBlock, re-
spectively. The function F is a composite of a 3×3 convolution
with stride (s, s), batch normalization (BN) [11], ReLU [12],
another 3×3 convolution with stride (1, 1), and BN. The skip

connection I depends on the dimension of F (x); I is the iden-
tity if the dimension of x matches with that of F (x), or other-
wise, I is a 1×1 convolution followed by BN, which adjusts
the dimension of x to align with that of F (x). To compare
with our proposed block, notice that the size of feature maps
changes from (F, T,C1) into (Fs ,

T
s , C2) by a ResBlock.

3. TEMPORAL-BOTTLENECK RESBLOCK

ResBlocks diminish spatial dimensions, particularly the tem-
poral dimension in the context of ASV models, through the
utilization of stride operations (e.g., letting s = 2). Conse-
quently, ResNet-based models often result in potential loss of
temporal information, raising concerns regarding their com-
patibility with ASP methods that aggregate temporal features.

To ensure the appropriate utilization of statistics pooling
and to maximize its effectiveness, we claim that it would be
efficient to capture and retain temporal information by not
reducing the corresponding dimension through the series of
ResBlocks. With this motivation, we propose an innovative
variant, referred to as Temporal-Bottleneck Residual Block
(TB-ResBlock), which integrates a transposed convolution
that enriches the temporal information. It is formulated as:

y = ReLU(G2(G1(x)) + I(x)) (5)

Here, the function G1 employs a 3×3 convolution with stride
(s, 2) followed by BN and ReLU. Conversely, G2 entails a
3×3 transposed convolution with stride (1, 2) followed by BN.
A transposed convolution reverses the standard convolution
by dimensions, making it a prevalent choice in image upsam-
pling models. The function I remains consistent with its defi-
nition in Section 2.2, relying on the dimension of G2(G1(x)).

An essential observation in the TB-ResBlock pertains
to the change of feature map dimensions. The function G1

alters the size from (F, T,C1) to (Fs ,
T
2 , C2), while G2 subse-

quently restores the temporal dimension through a transposed
convolution, resulting in a tensor size of (Fs , T, C2). The
central objective of this block is to prevent the reduction of
the temporal dimension through the series of TB-ResBlocks,
thereby facilitating effective aggregation in ASP.

Furthermore, TB-ResBlock brings about another advan-
tageous outcome akin to the effect observed in bottleneck
blocks in deeper ResNet architectures [7]. These conventional
bottleneck blocks not only diminish the channel dimension
for parameter regulation but also operate as feature extrac-
tors by compelling the network to compress feature maps, en-
hancing the capture of essential features. Likewise, our TB-
ResBlock reduces and subsequently recovers the number of
temporal frames, thereby enabling the exploration of more
valuable temporal information. It is noteworthy that our de-
sign does not lead to a reduction in parameter count as it does
in conventional bottleneck designs, because the spatial dimen-
sion of the feature map does not influence the parameter count
within convolutional layers.
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4. MODEL DESCRIPTION

This section provides a comprehensive account of our novel
ResNet variant which employs TB-ResBlocks. Prior to our
model, two baseline models are described, namely ResNet
with global average pooling and ResNet with ASP. An
overview of all network architectures is presented in Table 1.

4.1. ResNet

The architecture of the original ResNet is delineated in Ta-
ble 1 by replacing Box (A / B / C) with Box A. This ResNet
model, incorporating global average pooling (GAP), adheres
closely to the model proposed by [7], with minor deviations
in the kernel size of the conv1 layer and the final linear layer.
Block(c, s, n) in the table represents a group of n consecu-
tive ResBlocks, each structured according to Eq. 4. The ini-
tial convolution of the first ResBlock within the group applies
a stride of (s, s), while all subsequent convolutions adopt a
stride of (1, 1), with a consistent deployment of c filters. In-
stead of GAP, the second ResNet model embraces the ASP
layer, defined in Section 2.1, as described in Table 1 through
Box B. Due to the 3D tensor outputs from ResBlocks, the
tensor is flattened prior to the application of statistics pooling.
ResNet18 and ResNet34 models are described through the tu-
ple (n2, n3, n4, n5), each of which corresponds to (2, 2, 2, 2)
and (3, 4, 6, 3) respectively.

4.2. Temporal-Bottleneck ResNet

The architecture of our proposed TB-ResNet is presented
in Table 1, denoted by Box C. The pivotal attribute of this
model lies in its preservation of the number of temporal
frames throughout the series of TB-ResBlocks. By enhancing
temporal information, the model enables the aggregation of
well-preserved temporal features across the time axis within
the ASP layer. Preceding the ASP layer, an additional depth-
wise 5×1 convolutional layer dw conv6 exists to squeeze the
frequency dimension. TB-Block(c, s, n) in Table 1 employs
n TB-ResBlocks, each of which is defined by Eq. 5. The
first TB-ResBlock adopts a convolution with stride (s, 2),
followed by a transposed convolution with stride (1, 2). Sub-
sequent n−1 TB-ResBlocks employ (1, 2)-strided convolution
and (1, 2)-strided transposed convolution.

5. EXPERIMENTAL SETUP

5.1. Input feature for training

The input speech is obtained by randomly cutting a 2-second
long segment from each utterance. Subsequently it is con-
verted into 80-dimensional log-mel spectrograms using a
sampling rate of 16kHz, FFT size of 512, window width
of 25ms, and window shift of 10ms. For data augmenta-
tion, noise or reverberations are randomly applied to original

Table 1. Three ResNet architectures
Layer Name Layer Details Output Size

input - (80, T, 1)
conv1 5×5, BN, ReLU (80, T, 64)

maxpool 3×3 window, stride 2 (40, T/2, 64)
conv2 x Block(64, 1, n2) (40, T/2, 64)

Box (A / B / C)

linear speaker embedding 192

Box A: ResNet with GAP

conv3 x Block(128, 2, n3) (20, T/4, 128)
conv4 x Block(256, 2, n4) (10, T/8, 256)
conv5 x Block(512, 2, n5) (5, T/16, 512)

GAP - (1, 1, 512)

Box B: ResNet with ASP

conv3 x Block(128, 2, n3) (20, T/4, 128)
conv4 x Block(256, 2, n4) (10, T/8, 256)
conv5 x Block(512, 2, n5) (5, T/16, 512)
flatten except for time axis (T/16, 5×512)
ASP channel-dependent 5120

Box C: TB-ResNet

conv3 x TB-Block(128, 2, n3) (20, T/2, 128)
conv4 x TB-Block(256, 2, n4) (10, T/2, 256)
conv5 x TB-Block(512, 2, n5) (5, T/2, 512)

dw conv6 5×1, BN, ReLU (1, T/2, 512)
ASP channel-dependent 1024

speeches using MUSAN and Room Impulse Response and
Noise database [13, 14]. Additionally, SpecAugment [15] is
applied to the extracted spectrograms.

5.2. Training details

The VoxCeleb2 development set [16], containing 5,994
speakers and 1,092,009 utterances, serves as the training
dataset for our research. Training is carried out with a batch
size of 128 over 80 epochs, utilizing Adam [17] optimizer
with weight decay of 2×10−5. The learning rate is decayed
exponentially from 10−3 at a rate of 0.97 per epoch. AAM-
softmax [18] is employed as the loss function with a margin
of 0.2 and a scale of 30, facilitating an enlarged margin be-
tween distinct speaker classes. All convolution layers in the
models are initialized by Kaiming initialization [19].

5.3. Evaluation details

Model performance is evaluated on the VoxCeleb1 test set
[19], comprising 1,251 speakers and 153,516 utterances.
The test set contains three trial pair lists: VoxCeleb1-O,
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Table 2. Model performance
Model # Params VoxCeleb1-O VoxCeleb1-H VoxCeleb1-E

EER (%) minDCF EER (%) minDCF EER (%) minDCF
ResNet18-GAP 11.27M 2.03 0.1410 3.73 0.2300 2.08 0.1410
ResNet18-ASP 13.80M 1.62 0.1109 3.02 0.1842 1.64 0.1100
TB-ResNet18 11.44M 1.36 0.0870 2.47 0.1497 1.39 0.0895

ResNet34-GAP 21.38M 1.60 0.1080 3.20 0.1940 1.73 0.1190
ResNet34-ASP 23.91M 1.35 0.0847 2.69 0.1629 1.43 0.0966
TB-ResNet34 21.55M 1.13 0.0687 2.20 0.1298 1.21 0.0779

VoxCeleb1-H, and VoxCeleb1-E. They encompass 37,611,
550,894, and 579,818 trial pairs, representing 40, 1,190, and
1,251 speakers, respectively.

For each signal, two types of inputs are utilized: the full-
length signal and five randomly sampled 3-second long seg-
ments. For a given trial pair, cosine similarity s1 is computed
between two 192-dimensional speaker embeddings derived
from the full-length signals. Additionally, twenty-five cosine
similarities between speaker embeddings of the 3-second seg-
ments are computed, with the average of these similarities de-
noted as s2. The final score for the pair is 0.5(s1+s2). Model
performance is evaluated by the equal error rate (EER) and
the minimum detection cost function (minDCF or CDet) [20].
The minDCF of a model θ is defined as follows:

CDet(θ) = CMiss × PTarget × PMiss(θ)

+ CFalseAlarm × (1− PTarget)× PFalseAlarm(θ).
(6)

where CMiss = CFalseAlarm = 1 and PTarget = 0.05.

5.4. Experimental results

All experiments are conducted three times and the average re-
sults are presented in Table 2. ResNet18-GAP and ResNet34-
GAP denote the models employing GAP, while ResNet18-
ASP and ResNet34-ASP correspond to ASP. The substantial
enhancement in model performance shows the necessity of
ASP in ResNet-based models. Moreover, TB-ResNet18 and
TB-ResNet34 exhibit even greater improvement, confirming
the importance of enriched frame-level features via our novel
temporal bottleneck figure in order to take advantage of ASP.

5.5. Ablation studies

The first investigation is about controlling the number of re-
tained temporal frames prior to ASP. At first, ResBlocks are
used to reduce the number of temporal frames, and subse-
quently, TB-ResBlocks are used to maintain the time dimen-
sion unchanged. For example, if the model intended to retain
T/8 temporal frames, it reduces the time dimension up to the
block conv4 x using ResBlocks, and then it keeps the time
dimension unchanged by using a TB-ResBlock in conv5 x.

Table 3. Two ablation studies
Model # Frames VoxCeleb1-O

EER (%) minDCF
TB-ResNet18 T/16 1.68 0.1100

T/8 1.57 0.1050
T/4 1.45 0.0920
T/2 1.36 0.0870

Bilinear T/2 1.89 0.1155
TB-ResNet34 T/16 1.35 0.0850

T/8 1.23 0.0820
T/4 1.27 0.0780
T/2 1.13 0.0687

Bilinear T/2 1.45 0.0885

Table 3 shows that models tend to achieve better performance
when retaining more temporal frames prior to ASP.

The second investigation aims to validate the significance
of transposed convolution in TB-ResBlocks. As an alterna-
tive to transposed convolution, bilinear interpolation was em-
ployed to restore the temporal dimension. Notably, Table 3
illustrates a marked degradation in performance upon the ap-
plication of bilinear interpolation.

6. CONCLUSION

In this study, we proposed Temporal-Bottleneck ResNet, a
novel speaker verification system incorporating a unique tem-
poral bottleneck configuration within its building blocks. It
is implemented using transposed convolutions to effectively
capture and retain frame-level contexts. The design enhances
the meaningful aggregation of temporal information through
the ASP layer, ultimately resulting in more informative statis-
tics. Notably, our proposed TB-ResNet showed a substan-
tially increased performance compared to ResNet models em-
ploying GAP and ASP, as demonstrated on the VoxCeleb1
test set. These findings underscore the efficacy of our inno-
vative time-enriched design. Importantly, the integration of
this novel framework into various speaker verification models
based on 2D convolutions is both seamless and practicable.
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