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Figure 1: Overview of the proposed system.

ABSTRACT
The first Audio Deep Synthesis Detection Challenge (ADD 2022)
competition was held which dealt with audio deepfake detection,
audio deep synthesis, audio fake game, and adversarial attacks. Our
team participated in track 1, classifying bona fide and fake utter-
ances in noisy environments. Through exploratory data analysis, we
found that noisy signals appear in similar frequency bands for given
voice samples. If a model is trained to rely heavily on information
in frequency bands where noise exists, performance will be poor.
In this paper, we propose a data augmentation method, Frequency
Feature Masking (FFM) that randomly masks frequency bands. FFM
makes a model robust by not relying on specific frequency bands
and prevents overfitting. We applied FFM and mixup augmentation
on five spectrogram-based deep neural network architectures that
performed well for spoofing detection using mel-spectrogram and
constant Q transform (CQT) features. Our best submission achieved
23.8% in EER and ranked 3rd on track 1. To demonstrate the useful-
ness of our proposed FFM augmentation, we further experimented
with FFM augmentation using ASVspoof 2019 Logical Access (LA)
datasets.
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1 INTRODUCTION
Voice-related technologies are rapidly developing in recent years,
prompting several high-tech companies to develop voice assistants.
Voice assistants are being made to include various functions based
on the company’s business. For example, a manufacturing firm,
Samsung Electronics wants to use Bixby to control their devices, and
an e-commerce company, Amazon lets Alexa purchase products.

However, the more helpful features were introduced, the more
security issues arose. Burger King, for example, advertised in 2017:
"OK Google, what is the Whopper burger?" and, Google Home
was activated immediately and read Wikipedia’s description of
Whopper burger. We do not want a user’s voice assistant to follow
the instructions of a television or for others to control the voice
assistant using the user’s synthesized voices.
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Spoofing detection competitions have been held steadily to ad-
dress these issues. These competitions include AVspoof 2015 [5],
ASVspoof 2015 [28], ASVspoof 2017 [11], ASVspoof 2019 [22], ASV
spoof 2021 [29], and ADD 2022 [31]. Many results have been pub-
lished for spoofing detection. Light CNN (LCNN) using max feature
maps (MFM) as an activation of a convolution block showed good
performance over 2017, 2019, and 2021 years [14, 15, 23, 26]. At-
tempts to create deep learning model’s based on raw audio rather
than a spectrogram signal basis have been investigated [21, 25], and
AASIST model was proposed based on graph attention network [7].

ADD 2022 was the most recent competition, and Track 1 ad-
dressed spoofing detection in noisy environments. The data with
environmental noise was a new factor which was not considered
in previous competitions. We found that environmental noise sig-
nals such as refrigerator sound reside in a similar frequency band
for given voice samples. We propose a frequency feature masking
(FFM) augmentation technique that masks a high-frequency region,
a low-frequency region, or a random frequency band where envi-
ronmental noises are expected to exist. FFM helps robust training of
a spoofing detection model in noisy environments. FFM is similar
to SpecAugment [18] in that the augmentation policy comprises
wrapping features, masking blocks of frequency channels, or time
steps. FFM is designed to focus more on voice spoofing problems in
noisy environments. Fig. 1 describes an overview of our proposed
system. Our method converts speech input data into spectrogram
features, and mixup [33] and FFM augmentation are applied to
the features. Later, we trained five spectrogram-based deep neural
network architectures that performed well for spoofing detection
using mel-spectrogram and constant Q transform (CQT) features.
Five systems are (1) ResMax [13] with CQT feature, (2) Light CNN
(LCNN) [15, 26] with CQT feature, (3) BC-ResMax [30] (a vari-
ant of BC-ResNet [8]) with mel-spectrogram feature, (4) Double
Depthwise Separable net (DDWSnet) [30] with mel-spectrogram
feature, and (5) Overlapped Frequency-Distributed (OFD) model
[2] with CQT feature. The ensemble model of those five systems
was submitted in the competition.

Although the effectiveness of the FFM augmentation method
was demonstrated in ADD 2022 competition, further research is
necessary to establish what advantages FFM offers in broader set-
tings. In this study, we test the FFM augmentation technique by
using ADD competition dataset, which includes noisy scenarios as
well as ASVspoof 2019 LA data in general situations. The perfor-
mance of the models are measured by the equal error rate (EER).
The following is a summary of our works.

(1) We describe our submitted ensemble system comprising
LCNN, ResMax, BC-ResMax, DDWS, and OFD models. It
achieved 23.8% in EER, ranking 3rd on track 1 in ADD 2022
competition.

(2) Using ADD competition dataset, the application of FFM pro-
duced exceptional results. Without any data augmentations,
BC-ResMax, DDWS, LCNN, ResMax, and OFD models have
EER of 22.31%, 22.53%, 20.14%, 19.97%, and 21.35%, respec-
tively. Mixup augmentation decreased those EERs to 15.87%,
17.19%, 20.13%, 15.60%, and 17.12%. Additional FFM augmen-
tation remarkably decreased EER of BC-ResMax, DDWS,

LCNN, and ResMax models to 12.09%, 13.40%, 16.81%, and
15.22%.

(3) FFM was useful not only on the noisy ADD dataset but also
on the ASVspoof 2019 LA dataset. In particular, the high-
frequency masking significantly improved the performance
on the ASVspoof 2019 LA dataset. The performance of base-
line models without any augmentation ranged from 2.63%
to 4.45% in EER. Additional mixup augmentation achieved
EER ranging from 2.87% to 4.06%. On the other hand, LCNN
with mixup, Low-frequency, and High-frequency masking
augmentation achieved the best result with 1.93% in EER.

2 METHODS
2.1 Feature engineering
We utilized CQT and mel-spectrogram feature extractions using
the librosa software [16]. For the CQT feature extraction, we set
the minimum frequency to 5, the number of frequency bins to 100,
and the filter scale factor to 1. For the mel-spectrogram feature
extraction, we used 100 frequency bins, 1024 window lengths, and
512 hop sizes.

2.2 Mixup augmentation
Mixup is a widely used data augmentation in voice classifications as
well as image classifications [33]. The method mixes two different
samples of the training set according to a parameter 𝜆 which is
sampled from the 𝑏𝑒𝑡𝑎(𝛼, 𝛼) distribution with a hyper parameter 𝛼 .
In our modeling, we set 𝛼 from 0.4-0.9. The method is as follows:

𝑋 = 𝜆𝑋𝑖 + (1 − 𝜆)𝑋 𝑗 , (1)

𝑦 = 𝜆𝑦𝑖 + (1 − 𝜆)𝑦 𝑗 , (2)

where 𝑋𝑖 and 𝑋 𝑗 are different spectrogram images with their corre-
sponding labels 𝑦𝑖 and 𝑦 𝑗 , respectively.

2.3 Frequency feature masking (FFM)
augmentation

Fig. 2(a) and (b) show a genuine voice sample in a normal environ-
ment from training data and in a noisy environment from adapta-
tion data, respectively. In Fig. 2(b), we can find long horizontal lines
around 4096 Hz. The utterance sample had a fixed high frequency
noise signal like the sound of a vacuum cleaner when we heard the
utterance sample. We can think of the following scenarios:

• High frequency areas may have more noise. Let the model
focus more on other frequency areas by masking high fre-
quency areas.

• Low frequency areas may have more noise. Let the model
focus more on other frequency areas by masking low fre-
quency areas.

• If a model is trained to focus on specific frequency bands,
then the model performance will decrease when a noise
signal occurs in the frequency band. Random frequency band
masking helps the model learn without being biased in some
frequency band.
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(a) Normal environment (b) Noisy environment

Figure 2: A genuine voice sample in a normal environment
from training data (a), and in a noisy environment from
adaptation data (b).

(a) Low-frequency masking (b) High-frequency masking

(c) Random frequency band masking

Figure 3: Description on Low-frequency masking, High-
frequency masking and Random frequency band masking.

To address these scenarios, we propose a ‘frequency feature
masking (FFM)‘ augmentation, which considers three types of mask-
ing, ‘low-frequency masking’, ‘high-frequency masking’, and ‘ran-
dom frequency band masking’ (shown in Fig. 3). FFM augmentation
is applied for each training sample, and the details for each tech-
nique are explained as follows.

Low-frequency masking is applied with probability 𝑝𝑙 . The low-
frequency area is randomly selected (ex. from 0 to 14 range in 100
mel bins), and all corresponding values in the spectrogram are set
to 0.

High-frequency masking is similar to low-frequency masking.
Only differences are the masking probability 𝑝ℎ and the selected
frequency area (ex. from 85 to 100 range in 100 mel bins).

Random frequency band masking is applied with probability 𝑝𝑟 .
Also the number of masked frequency bands, band sizes, and the
locations of the bands are randomly selected. The values in the
masked frequency bands are set to 0.

2.4 Models
Using the previously proposed FFM augmentation, five spectrogram-
based models were considered.

2.4.1 LCNN model.
LCNN model has proven useful in ASVspoof 2017, 2019, and 2021
competitions [14, 15, 23]. We used a deeper LCNN model by adding
more layers to Light CNN-9 model, which repeats five convolution
layers and four network-in-network (NIN) layers [26]. Our deeper
model iterates six convolution layers and five NIN layers using 32,
48, 64, 32, 32, and 32 convolution filters and 32, 48, 64, 64, and 32 NIN
filters. As in the previous model, the kernel size of the first convolu-
tion layer is set to 5, and those of the remaining convolution layers
are set to 3. Fig. 4(a) describes the base LCNN block that consists
of a convolution, MFM and an optional batch normalization layer
(dotted block applied when 𝑏 = 1). Fig. 5(a) describes full model
architecture. LCNN blocks with kernel size 1 are NIN layers. Except
for the second convolution layer, batch normalization follows. All
NIN layers are followed by batch normalization layer. Instead of
using a fully connected layer defined in Light CNN-9 model [26],
we used a global average pooling layer, batch normalization and a
dropout layer with probability 0.5.
2.4.2 ResMax model.
Wepreviously proposed ResMaxmodel and confirmed that it showed
excellent performance in the ASVspoof 2019 competition dataset
[13]. A ResMax block has four parameters (𝑓 , 𝑘 , 𝑙 ,𝑚) as described
in Fig. 4(b), indicating the number of ResMax filters (𝑓 ), the kernel
size in the convolution layer (𝑘), whether the additional execution
(described with the dotted line) in the ResMax block is performed
(𝑙 ), and whether a max-pooling is applied (𝑚), respectively. AnMFM
layer is used after a convolution layer which takes maximum of two
feature maps elementwise. This process makes the model robust
and makes the model lighter through selection. ResMax blocks use a
skip connection to mitigate performance degradation issues due to
information loss. One architecture of the entire model is described
in Fig. 5(b).
2.4.3 Double Depthwise Separable (DDWS) model.
The original depthwise separable convolution consists of a depth-
wise convolution with (𝑘1, 𝑘2)-kernel and a pointwise convolution
[3, 6]. In DDWS model, Yang et al. (2022) [30] proposed to apply
the existing depthwise convolutions twice followed by a pointwise
convolution. Two depthwise convolutions have the kernels of the
size (𝑘1, 1) and (1, 𝑘2), respectively, to consider frequency and tem-
poral information separately. Precisely, we define a DDWS block
as shown in Fig. 4(c). We define 𝑓1 to be a depthwise convolution
with (1, 𝑘2) kernel followed by Subspectral Normalization (SSN)
[1] and Swish activation [19]. 𝑓2 is a depthwise convolution with
(𝑘1, 1) kernel followed by SSN and ReLU activation [17]. Lastly, 𝑔
is a composite of a pointwise convolution, ReLU activation, and
spatial dropout. A block design without dotted marks in Fig. 4(c)
on the top describes a normal block, which should be applied when
an input and the output of the block have the same number of
channels. A design with dotted marks is a transition block, which
is applied when the number of channels becomes different after an
input passes the block. The full model architecture is described in
Fig. 5(c).
2.4.4 BC-ResMax model.
Yang et al. (2022) [30] revised BC-ResNet [8, 9] by integrating max
feature map (MFM) activation from LCNN. Our BC-ResMax block
is described in Fig. 4(d). We define 𝑓2 to be a depthwise convolution
with (𝑘1, 1) kernel followed by MFM and SSN. As explained in
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(a) LCNN block (b) ResMax block

(c) DDWS block (d) BC-ResMax block

(e) OFD block when 𝑛 = 4

Figure 4: Model Blocks

DDWS model, a block design without dotted marks on the top is a
normal block, and a design with dotted marks is a transition block.
The full model architecture is described in Fig. 5(c).
2.4.5 Overlapped Frequency-Distributed (OFD) model.
Choi et al. (2022) [2] introduce Overlapped Frequency-Distributed
(OFD) model. The model consists of six OFD blocks, each of which
has two streams described in Fig. 4(e). The first stream is motivated
by FreqCNN model [27] and the second stream is obtained from
BC-ResNet model [8, 9].

The first stream is to learn frequency-related features. Let 𝑋 =

(𝑥𝑖 𝑗 ) ∈ R𝐻×𝑊 be an input of the block, where𝐻 and𝑊 correspond
to the frequency and temporal dimensions, respectively, and the
channel dimension is excluded. Let 𝑛 be the split number along the

(a) LCNN model (b) ResMax model

(c) DDWS/BC-ResMax model (d) OFD model

Figure 5: Model Architectures

frequency axis. We zero-pad the input 𝑋 along the frequency axis
so that 𝐻 is a multiple of 2𝑛, if necessary, and set 𝑠 = 𝐻

2𝑛 . We split
𝑋 into 𝑛 disjoint parts {𝑋 (𝑘) }𝑛

𝑘=1 and additional 𝑛 − 1 overlapped
parts {𝑌 (𝑘) }𝑛−1

𝑘=1 , which are as follows:

𝑋 (𝑘) = (𝑥𝑖 𝑗 ) ∈ R2𝑠×𝑊 , 1 + 2(𝑘 − 1)𝑠 ≤ 𝑖 ≤ 2𝑘𝑠 (3)

𝑌 (𝑘) = (𝑥𝑖 𝑗 ) ∈ R2𝑠×𝑊 , 1 + (2𝑘 − 1)𝑠 ≤ 𝑖 ≤ (2𝑘 + 1)𝑠 (4)
We’d like to mention that the lower half part of 𝑋 (𝑘) and the upper
half part of 𝑌 (𝑘) coincide, and the upper half part of 𝑋 (𝑘+1) and
the lower half part of 𝑌 (𝑘) coincide. We define 𝑓 to be a composite
of a convolution with (𝑘1, 1)-kernel, batch normalization, ReLU,
another convolution with (𝑘1, 1)-kernel, and batch normalization.
Notice that no activation is used in the second convolution, and
zero-padding is required in each convolution to keep the size the
same. Next, 𝑓 (𝑋 (𝑘) )’s and 𝑓 (𝑌 (𝑘) )’s should be joined to reconstruct
a feature map of the size 𝐻 ×𝑊 . Each of them is divided into two
parts, which are the upper and lower half parts, saying 𝑓 (𝑋 (𝑘) )1,
𝑓 (𝑋 (𝑘) )2, 𝑓 (𝑌 (𝑘) )1, and 𝑓 (𝑌 (𝑘) )2, having the size 𝑠 ×𝑊 . Then, we
define 𝑍 (2𝑘−1) = 𝑓 (𝑋 (𝑘) )2 ∨ 𝑓 (𝑌 (𝑘) )1 and 𝑍 (2𝑘) = 𝑓 (𝑋 (𝑘+1) )1 ∨
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𝑓 (𝑌 (𝑘) )2 where ∨ is an elementwise maximum operation. Note
that the maximum operation is indeed an MFM activation, acting
as an activation in the last convolution. Finally, for the set of 2𝑛
sub-images {

𝑓 (𝑋 (1) )1, 𝑍 (1) , . . . , 𝑍 (2𝑛−2) , 𝑓 (𝑋 (𝑛) )2
}
, (5)

we take concatenation of these images along the frequency axis.
Then the resulting output is the final output of this stream.

The second stream is to learn temporal features. The input 𝑋 is
averaged out along the frequency axis so that we get a feature map
of size R1×𝑊 . The resulting feature map is put into the function
ℎ, where ℎ is defined to be a composite of (1, 𝑘2)-depthwise con-
volution with dilation of 4, batch normalization, swish activation,
(1, 1)-convolution with ReLU activation, and spatial dropout. Here
we use zero-padding to keep the temporal dimension the same.
Lastly, we expand the feature map along the frequency axis using
broadcasting operation [8].

Each OFD block is represented as ‘OFD Block(𝑛, 𝑘1, 𝑘2,𝑚)’ in the
figure. Here,𝑚 is the number of filters used in convolutions in both
streams. The overall architecture of OFD model is illustrated in Fig.
5(d). The dropout rate is fixed to 0.5, and notice that in the 5th and
6th blocks of OFD model, (1, 1)-kernel is used in all convolution
layers (𝑘1 = 𝑘2 = 1) to manage the receptive field in the network
[12].

3 EXPERIMENTS
3.1 Datasets
3.1.1 ADD 2022 challenge datasets.

ADD 2022 challenge [31] used more realistically generated data
to prevent spoofing attacks in real situations. This challenge com-
prised a low-quality fake audio detection (LF) track, a partially fake
audio detection (PF) track, and an audio fake game (FG) track. We
concentrate on track 1, which consists of genuine data and spoof-
attack data generated by text-to-speech (TTS) and voice conversion
(VC). The LF track classifies genuine and spoofing utterances inter-
rupted by various real-world noises and background music. Table 1
describes the ADD challenge dataset. It consists of training, devel-
opment (dev.), adaptation, and test data. Training and development
sets use publicly available Mandarin AISHELL-3 [20] to select utter-
ances and the number of these sets are about 27K, and 23K utterance
samples. The adaptation data has about 1K utterances as in a similar
environment to the test set. The test data consists of approximately
110K unlabeled utterances containing various noises.

Table 1: The number of utterances in training, development,
adaptation and test sets of the ADD database.

Training Dev. Adaptation Test
Genuine 3,012 2,307 300 -
Fake 24,072 21,295 700 -
Unlabeled - - - 109,199

3.1.2 ASVspoof 2019 challenge LA dataset.

ASVspoof 2019 is the challenge focused on TTS, VC and replay
spoofing attack types. The ASVspoof 2019 dataset [22] consists
of logical access (LA) and physical access (PA) scenarios. Both are
derived from VCTK basic corpus [24], and the dataset is divided into
three parts: training, development, and evaluation. We focuse on
LA data since it focuses on TTS and VC attack types similar to the
ADD challenge dataset. The LA scenario uses a variety of 17 state-
of-the-art TTS and VC systems to generate bona fide and spoofed
speech. Six TTS and VC systems are designated as known attacks
in the training and development data, while the remaining eleven
systems are designated as unknown attacks in the test data. Table
2 describes the ASVspoof 2019 LA dataset. It consists of training,
development (dev.), and test data. Training and development data
consist of about 25K and 25K utterances. The test data consists of
approximately 71K utterances containing unknown attacks.

Table 2: The number of utterances in training, development
and test sets of the ASVspoof 2019 LA database

Training Dev. Test
Genuine 2,580 2,548 7,355
Fake 22,800 22,296 63,882

3.2 Experimental setup
We studied and compared our experimental results with the intro-
duced models in the previous section. To verify the performance,
FFM was applied to two databases: ADD 2022 competition dataset
with noise scenarios and ASVspoof 2019 LA dataset in general situ-
ations. Each utterance is sampled at 16kHz. The hyperparameters
in FFM augmentations are set as follows. For high-frequency (HF)
masking, a random integer ℎ is selected from 80 to 87, and the
high-frequency band which ranges from ℎ to 100 among 100 mel
bins is randomly masked (with 𝑝ℎ = 0.5). For low-frequency (LF)
masking, a random integer 𝑙 is selected from 7 to 12, and the low-
frequency band which ranges from 1 to 𝑙 among 100 mel bins is
randomly masked (with 𝑝𝑙 = 0.5). For random frequency (RF) band
masking, it is performed randomly with 𝑝𝑟 = 2/3. Two bands are
used for masking with probability 1/3 and one band is used with
probability 1/3. The location(s) and window size(s) (between 8 to
12) of masking band(s) are randomly selected.

The performance is measured in equal error rate (EER) which is
the rate where the false acceptance rate (FAR) and the false rejection
rate (FRR) are equal. In general, the lower the EER value is, the
better the model performs. We used a 9-second sample. For training
the proposed models, we set the batch size to 16 and the epoch to
70. We ran three training sessions and obtained the average EER
value for development and test data.The learning rate started from
1e-3 and decreased to 1e-5 using a learning rate scheduler with a
sigmoidal decay function.

In the experiment using ADD data, training and development
data were combined to learn the model to evaluate the adaptation
test set. As a model for submitting ADD final evaluation, all training,
development, and adaptation data were combined to train the final
models. In the experiment using ASVspoof2019 data, training was
conducted using only training data.
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3.3 Experimental result on ADD 2022 dataset
We experimentedwith our proposedmodels and augmentation tech-
niques on the adaptation set which exposed to real-world noises
and background music. Table 3 describes EERs on the adaptation
set for each model with different augmentation methods applied.
Performance has improved more when applying the augmenta-
tion techniques rather than comparing the models. Without any
data augmentations, BC-ResMax, DDWS, LCNN, ResMax, and OFD
models have an EER of 22.31%, 22.53%, 20.14%, 19.97%, and 21.35%,
respectively. Mixup augmentation reduced those EERs to 15.87%,
17.19%, 20.13%, 15.60%, and 17.12%, respectively. Moreover, addi-
tional FFM augmentation remarkably lowered to 12.09%, 13.40%,
16.81%, 15.22%, and 16.04% in EER, respectively. These results show
that the proposed FFM augmentation considers the noisy environ-
ment effectively.

Table 3: EER (%) on the adaptation set for each model with
different augmentation methods. The best results for each
model are shown in bold.

Augmentation BC-ResMax DDWS LCNN ResMax OFD
Baseline 22.31 22.53 20.14 19.97 21.35
Mixup 15.87 17.19 20.13 15.60 17.12
Mixup, LF 16.29 16.88 19.88 16.49 17.20
Mixup, HF 16.05 17.31 19.70 17.37 17.39
Mixup, RF 14.02 13.40 18.45 15.22 17.11
Mixup, LF, HF 14.90 15.99 19.56 19.62 19.60
Mixup, LF, RF 12.09 15.52 16.81 16.89 16.66
Mixup, HF, RF 12.64 15.60 20.24 17.33 16.04
Mixup, LF, HF, RF 12.77 16.70 19.00 17.48 17.78

3.4 Experimental result on ASVspoof 2019 LA
dataset

Table 4 shows the results of applying our approach in the LA of
the ASVspoof 2019 database. We experimented with eight differ-
ent combinations. Without any data augmentations, BC-ResMax,
DDWS, LCNN, ResMax, and OFD models have an EER of 3.83%,
2.63%, 3.18%, 4.45%, and 2.68%, respectively. Augmentation using
Mixup, LF and HF showed the best performance in BC-ResMax,
DDWS and LCNN with 2.47%, 2.45%, and 1.93%. On the other hand,
ResMax and OFD models performed better with Mixup and HF
augmentation resulting 2.08% and 1.49%, respectively, in EER. The
performance with Mixup, LF and HF augmentation was excellent
in the ASVspoof LA dataset regardless of the models. Especially,
HF augmentation was highly effective. When only Mixup was ap-
plied, the EERs ranged from 2.87% to 4.06%. Whereas when HF was
additionally applied with Mixup, there was a huge improvement
in EERs, ranging from 1.49% to 2.73%. We may infer two conclu-
sions: the high-frequency area of LA data might slightly harm the
performance in discrimination, or the test samples have different
patterns in the high-frequency part from the training samples.

3.5 Submitted ensemble system
Table 5 describes five top-performing single systems, data augmen-
tation methods applied, their EER on final evaluation data, weights
for the final ensemble model, and the EER of our ensemble system.

Table 4: EER (%) of different droping out augmentation meth-
ods on ASVspoof 2019 LA dataset. The best results for each
model are shown in bold.

Augmentation BC-ResMax DDWS LCNN ResMax OFD
Baseline 3.83 2.63 3.18 4.45 2.68
Mixup 3.67 4.06 3.11 3.51 2.87
Mixup, LF 3.20 3.28 2.88 3.60 2.58
Mixup, HF 2.73 2.66 2.04 2.08 1.49
Mixup, RF 5.17 6.65 3.52 4.57 3.25
Mixup, LF, HF 2.47 2.45 1.93 2.15 1.88
Mixup, LF, RF 4.99 4.47 3.30 4.97 3.32
Mixup, HF, RF 4.06 4.78 2.56 3.21 1.99
Mixup, LF, HF, RF 4.34 4.33 2.45 3.78 2.49

Applying all LF, HF and RF augmentations in the final evaluation
data did not always produce the best result, and we have tested
various combinations and hyperparameters. The final models were
selected to have as few correlations as possible, and the ensemble
weights were heuristically chosen based on EER.

Table 5: EER (%) on the final evaluation data from the ADD
2022 challenge, and weights for ensemble model.

Model Feature Augmentation EER weights
LCNN CQT Mixup, LF, RF 26.05% 0.20
ResMax CQT Mixup, RF 24.7% 0.27
DDWS melspec Mixup, RF 26.40% 0.20
BC-ResMax melspec Mixup, LF, RF 27.34% 0.13
OFD CQT Mixup 26.02% 0.20
Ensemble - - 23.8% -

3.6 Ablation Study
3.6.1 Masking vs Blurring.

Tomilov et al. [23] pointed out that using finite impulse response
(FIR) filters improves the performance of spoofing detection models.
Using a high pass filter or a low pass filter of FIR is similar to the
HF or LF augmentation of FFM, respectively. Main difference is that
if we use a filter of FIR, the filter does not mask the information of
a frequency band fully but it weakens the information. We thought
of modifying our proposed FFMmethod to play a role in weakening
information in a frequency band. We conducted an ablation study
to verify the effectiveness of Masking and Blurring in the proposed
FFM augmentation. Masking is the original proposed method which
drops the selected frequency band to ‘0’ as shown in Fig. 3. Blurring
is a method to diminish information by multiplying the selected fre-
quency band by a tiny number 0.01 instead of deleting the selected
frequency band.

Fig. 6 compares Masking and Blurring methods applied on ADD
2022 dataset and ASV2019 LA dataset. Bar graphs represent the
EERs of models when Masking methods are applied, and dotted
line graphs represent the EERs when Blurring methods are applied.
Table 6 and 7 show the quantitative results of applying Blurring to
the ADD 2022 and ASVspoof 2019 LA datasets. The best EER values
for BC-ResMax, DDWS, LCNN, ResMax, and OFD models applied
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(a) ADD 2022 database (b) ASVspoof 2019 LA database

Figure 6: EER (%) of droping out mask and Blurring mask in (a) ADD 2022 dataset and in (b) ASVspoof 2019 LA dataset.

with FFM augmentation on ADD 2022 dataset are 11.88%, 14.72%,
17.98%, 15.95%, and 16.44% respectively. BC-ResMax model gave
the best EER using Blurring, resulting an EER of 11.88%, which is
a better result than using Masking. As a result of applying Blur-
ring with DDWS, LCNN, and ResMax, the overall EER value was
about 1%p higher than the performance of applying Masking. The
best EER values for BC-ResMax, DDWS, LCNN, ResMax, and OFD
models in the ASVspoof 2019 dataset with Blurring FFM augmenta-
tion applied are 2.91%, 2.73%, 1.83%, 2.31%, and 1.69%, respectively.
Compared to Masking, LCNN model gave even better result with
Blurring application method, with an EER of 1.83%. On the other
hand, the other models showed better performance with Mask-
ing. Overall, the difference between Blurring augmentation and
Masking augmentation was small, and there was no statistically
significant difference using pairwise t-test. We should try more
simulations to obtain any statistical implication. the HF and LF
augmentation of FFM is similar to the method using FIR filters that
reduce information in high and low frequency bands (high pass
and low pass filters). FIR filters are applied on raw audio to reduce
high- or low-frequency information [23]. This can be interpreted as
blurring high- or low-frequency bands from the spectrogram point
of view. Instead of FFM masking, an experiment was conducted on
the blurring method, but no significant difference was found in our
ablation study.

Table 6: EER (%) of different Blurring augmentation methods
on ADD 2022 dataset.

Augmentation BC-ResMax DDWS LCNN ResMax OFD
Mixup, LF 13.95 18.34 19.41 17.33 18.45
Mixup, HF 17.02 18.04 20.80 18.29 17.88
Mixup, RF 13.32 14.72 19.07 16.06 16.44
Mixup, LF, HF 16.23 17.68 20.45 19.50 17.63
Mixup, LF, RF 11.88 15.59 18.08 15.95 17.39
Mixup, HF, RF 14.54 14.89 19.98 16.49 17.44
Mixup, LF, HF, RF 14.33 14.74 18.33 16.70 17.57

Table 7: EER (%) of different Blurring augmentation methods
on ASVspoof 2019 LA dataset.

Augmentation BC-ResMax DDWS LCNN ResMax OFD
Mixup, LF 3.96 3.70 2.87 3.80 2.88
Mixup, HF 2.96 2.85 1.83 2.40 1.69
Mixup, RF 5.02 3.97 3.79 4.09 2.89
Mixup, LF, HF 2.91 2.73 1.88 2.31 1.81
Mixup, LF, RF 5.76 5.39 3.72 4.74 3.41
Mixup, HF, RF 4.07 4.08 2.75 3.24 2.46
Mixup, LF, HF, RF 3.73 4.05 2.30 3.39 2.27

4 DISCUSSION
4.1 Comparison with FIR and SpecAugment
As seen in the previous ablation study, the HF and LF augmenta-
tion of FFM is similar to the method using FIR filters that reduce
information in high and low frequency bands (high pass and low
pass filters). FIR filters are applied on raw audio to reduce high- or
low-frequency information [23]. This can be interpreted as blur-
ring high- or low-frequency bands from the spectrogram point of
view. Instead of FFM masking, an experiment was conducted on
the blurring method, but no significant difference was found in our
ablation study.

The SpecAugument [18] consists of time warping, frequency
masking, and time masking. FFM has a modified version of policy
considering only frequency masking without time warping and
time masking. A slightly different part of the policy part is that
SpecAugment specifies how many frequency bands to mask as a hy-
perparameter. On the other hand, in our proposed FFM, one among
0, 1, 2, 3, ..., 𝐾 is randomly selected for frequency band masking, and
𝐾 is designated as a hyperparameter. Comparison of the differences
between the two policies should be further studied.
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4.2 When to use FFM
FFM is an augmentation technique that considers noisy test envi-
ronments. Efficacy was proven through experimental results using
ADD data, and LF and HF showed good performance even on gen-
eral ASVspoof2019 data, not in noisy environments. However, there
was no performance improvement in RF. In the ASVspoof 2019
problem, the frequency band in which the human voice exists will
be more important. By randomly masking low or high frequencies
that contain a small amount of human voice, the importance of the
relevant part is reflected less, and the model performance may have
been improved. In a general test situation like the ASVspoof 2019
data, it will be necessary to test which FFM method is better.

4.3 Future works
There are many data augmentation techniques used in the voice
field [4, 10, 18, 32]. In this study, an augmentation technique con-
sidering a noisy environment was proposed and used together with
mixup [33], but comparison with other augmentation techniques is
insufficient. Therefore, other masking-based augmentation meth-
ods and additional comparative experiments are needed.

5 CONCLUSION
This paper covers themodels used by our team participating in ADD
2022 Track 1. Unlike other voice spoofing detection contests, ADD
2022 Track 1 considers spoofing detection in a situation exposed to
real-life noise. We proposed FFM augmentation to robustly train
a model against real-life noise, which is a spectrogram-based aug-
mentation technique. We designed five spectrogram-based spoof-
ing detection models; LCNN with CQT feature, ResMax with CQT
feature, DDWS with mel-spectrogram feature, BC-ResMax with
mel-spectrogram feature, and OFD with CQT feature. The final
ensemble model achieved 23.8% EER, placing 3rd in the ADD 2022
Track 1 competition. The best baseline given in the competition
for track 1 [31] showed a performance of 24.1% in EER, and there
were only three teams that outperformed the baseline among the
42 participating teams.

To verify the usefulness of FFM augmentation, experiments were
conducted on ADD 2022 and ASVspoof 2019 LA datasets. It was con-
firmed that FFM improved the performance in all experimental mod-
els. Interestingly, FFM was useful not only on the noisy ADD 2022
dataset but also on ASVspoof 2019 LA dataset. In particular, the HF
augmentation significantly improved the performance on ASVspoof
2019 LA dataset. The high-frequency part of the ASVspoof 2019 LA
test dataset might differ from the high-frequency part of the training
set when compared with other frequency bands, or high-frequency
parts were less critical for classification models. For indirect com-
parison with the FIR filter method, Blurring augmentation method
was also tested, and there was no statistically significant difference
between the blurring augmentation and masking augmentation.
It would be because of small number of simulation runs, and we
should increase the number of runs in the future study.
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