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ABSTRACT Most statistical methods for quantitative trait loci (QTL) mapping focus on a single phenotype. However, multiple
phenotypes are commonly measured, and recent technological advances have greatly simplified the automated acquisition of
numerous phenotypes, including function-valued phenotypes, such as growth measured over time. While methods exist for QTL
mapping with function-valued phenotypes, they are generally computationally intensive and focus on single-QTL models. We propose
two simple, fast methods that maintain high power and precision and are amenable to extensions with multiple-QTL models using
a penalized likelihood approach. After identifying multiple QTL by these approaches, we can view the function-valued QTL effects to
provide a deeper understanding of the underlying processes. Our methods have been implemented as a package for R, funqtl.

THERE is a long history of work to map genetic loci (quan-
titative trait loci, QTL) influencing quantitative traits. Most

statistical methods for QTL mapping, such as interval mapping
(Lander and Botstein 1989), focus on a single phenotype. How-
ever, multiple phenotypes are commonly measured, and recent
technological advances have greatly simplified the automated
acquisition of numerous phenotypes, including phenotypes
measured over time. Phenotypes measured over time, an ex-
ample of a function-valued trait, have a number of advantages,
including the ability to dissect the time course of QTL effects.

A simple and intuitive approach to the analysis of such
data is to perform QTL analysis at each time point, in-
dividually, to identify QTL that affect the phenotype at each
time point. This method is simple; however, it does not
consider the smooth association across time points, and so it
may have less power to detect QTL. Moreover, it can be

difficult to combine the results across time points into a consis-
tent story.

A second approach is to fit parametric curves to the data
from each individual and treat the parameter estimates as
phenotypes in QTL analysis (e.g., see Kendziorski et al. 2002).
Ma et al. (2002) expanded this approach by fitting a logistic
growth model, gðtÞ ¼ a=ð1þ be2rtÞ; at each putative QTL
position, with parameters depending on QTL genotype. This
approach can have high power if the model is correct, but it
can be difficult to interpret the results if QTL have pleiotropic
effects on multiple parameters, and the parameters may have
no obvious biologic or mechanistic interpretation.

Another natural approach is to use a nonparametric method
so that we do not need to specify the functional shape. For
example, Yang et al. (2009) proposed a nonparametric func-
tional QTL mapping method that used a certain number of
basis functions to fit a function-valued phenotype. For example,
we might use 10 basis functions. This reduces the dimension
from the number of time points to 10, and this is done in a
flexible way, guided by the data. Min et al. (2011) extended
this method to multiple-QTL models, using Markov chain
Monte Carlo (MCMC) techniques.

Xiong et al. (2011) proposed an additional nonparamet-
ric functional mapping method based on estimating equa-
tions (EE). This method is fast and allows the selection of
multiple QTL by a test statistic that they proposed. Sillanpää
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et al. (2012) proposed another Bayesian multiple-QTL map-
ping method based on hierarchical modeling.

Important limitations of existing approaches for the
analysis of function-valued traits are that they focus on
single-QTL models or exhibit slow speed in multiple-QTL
search. We describe two simple methods for QTL mapping
with function-valued traits and, following the approach of
Broman and Speed (2002) and Manichaikul et al. (2009),
extend them for the consideration of multiple-QTL models.

We investigate the performance of our approach in
computer simulations and apply it to data on a plant growth
response known as root gravitropism, which Moore et al.
(2013) measured by automated image analysis over a time
course of 8 hr across a population of Arabidopsis thaliana
recombinant inbred lines (RIL). Our aim is to identify the
genetic loci (QTL) that influence the function-valued pheno-
type and to characterize their effects over time.

Methods

We focus on the case of RIL. Two inbred strains, say A and B,
are crossed and then the F1 hybrids are subjected to either
selfing or sibling mating for many generations to create
a new inbred line whose genome is a mosaic of the A and
B genomes. This is done multiple times in parallel. At any
genomic position, the RIL are homozygous AA or BB.

Single-QTL analysis

The most popular method for QTL mapping is interval
mapping, developed by Lander and Botstein (1989). Con-
sider a single phenotype, y, and assume there is one QTL,
with the model y = m + bq + e, where q denotes the QTL
genotype, taking the value 0 for genotype AA and 1 for
genotype BB, and e � N(0, s2). Thus m is the average phe-
notype for QTL genotype AA and b is the effect of the QTL.

A key problem is that genotypes are observed only at
markers, and we wish to consider positions between
markers as putative QTL locations. However, we may
calculate p = Pr(q = BB | marker data). The phenotype,
given the marker data, then follows a mixture of normal
distributions with known mixing proportion, p. An EM algo-
rithm (Dempster et al. 1977) may be used to derive maxi-
mum-likelihood estimates of the three parameters, m, b, and
s. This is done at each putative QTL location, l. Alterna-
tively, one may use regression of y on p to provide a fast
approximation (Haley and Knott 1992).

Lander and Botstein (1989) summarized the evidence for
a QTL at position l by the LOD score, LOD(l), which is the
log10 likelihood ratio comparing the hypothesis of a single QTL
at position l to the null hypothesis of no QTL. LOD scores in-
dicate evidence of presence of QTL. To assess the statistical
significance of the results, one must deal with the multiple-
hypothesis testing issue, from the scan across the genome. This is
best handled by a permutation test (Churchill and Doerge 1994).

With a function-valued trait, y(t), the model becomes
y(t) = m(t) + b(t)q + e(t). (We focus on the case of a phe-

notype measured over time, but the approach may be ap-
plied to any function-valued trait of a single parameter, such
as a dose-response curve, or really to any multivariate trait.)
The simplest approach is to apply single-QTL analysis for
each time t, individually. This gives LOD(t, l) for time t at
QTL position l. We seek to integrate the information across
time points to give overall evidence for QTL. Two simple
rules are to take the average or maximum LOD scores across
times, respectively,

SLODðlÞ ¼ 1
T

XT
t¼1

LODðt; lÞ

MLODðlÞ ¼ max
t

LODðt; lÞ;

where T is the number of time points.
With MLOD, one asks whether there is any time point at

which a locus has an effect, while SLOD concerns the overall
effect of the locus. MLOD will be more powerful for identifying
QTL with large effects over a brief interval of time, while
SLOD will be more powerful for identifying loci with effects
over a large interval.

To assess significance, we permute the rows in the pheno-
type matrix relative to rows in the genotype matrix, calculate
the statistic across the genome, and record the maximum. We
take the 95th percentile of the genome-wide maxima as a 5%
significance threshold.

Rapid computations are enabled by the simultaneous
analysis of the multiple time points. Whereas coefficient
estimates at a single time point would be obtained as
b̂ ¼ ðX9  XÞ21X9  y; with multiple time points we may replace
the vector y with a matrix Y, whose columns correspond to
the multiple time points. This gives b̂ ¼ ðX9  XÞ21X9Y : The
matrix inversion is performed once at each putative QTL
position, and the simultaneous analysis of multiple time
points is obtained by matrix multiplication, and so the com-
putations are linear in the number of time points.

Multiple-QTL analysis

Broman and Speed (2002) developed a method to find mul-
tiple QTL in an additive model by using a penalized LOD
score criterion, pLODa(g) = LOD(g) 2 T|g|, where |g| is
the number of QTL in a model g, and T is a penalty constant,
chosen as the 1 2 a quantile of the genome-wide maximum
LOD score under the null hypothesis of no QTL, derived
from a permutation test.

The approach is readily extended to the function-valued
case, by replacing the LOD score for a model with SLOD or
MLOD, to integrate the information across time points. The
penalty, T, is the 1 2 a significance threshold from a single-
QTL genome scan, derived using the permutation procedure
described above.

To search the space of models, we use the stepwise model
search algorithm of Broman and Speed (2002): We use for-
ward selection up to a model of fixed size (e.g., 10 QTL),
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followed by backward elimination to the null model. The
selected model ĝ is the model that maximizes the penalized
SLOD or MLOD criterion, among all models visited.

The selected model is of the form yðtÞ ¼ m̂ðtÞ þP
j b̂jðtÞqjþ

eðtÞ; where the qj are selected QTL (taking value 0 for ge-
notype AA and 1 for genotype BB), m̂ðtÞ is an estimated
baseline function, and b̂jðtÞ is the estimated effect of QTL j
at time t.

Application

As an illustration of our approaches, we considered data
from Moore et al. (2013) on gravitropism in Arabidopsis RIL,
Cape Verde Islands (Cvi)3 Landsberg erecta (Ler). For each
of 162 RIL, 8–20 replicate seeds per line were germinated
and then rotated 90�, to change the orientation of gravity.
The growth of the seedlings was captured on video, over the
course of 8 hr, and a number of phenotypes were derived by
automated image analysis.

We focus on the angle of the root tip, in degrees, over
time (averaged across replicates within an RIL), and consider
only the first of two replicate data sets examined in Moore
et al. (2013). There are genotype data at 234 markers on five
chromosomes; the function-valued root tip angle trait was
measured at 241 time points (every 2 min for 8 hr). The
estimated genetic map and the trait values for five randomly
selected RIL are displayed in Supporting Information, Figure S1.
The average and SD of the root tip angle at the individual time
points, and the correlations between time points, are displayed
in Figure S2.

The data are available at the QTL Archive, http://qtlarchive.
org/db/q?pg=projdetails&proj=moore_2013b.

Single-QTL analysis

We first applied interval mapping by Haley–Knott regression
(Haley and Knott 1992), considering each time point indi-
vidually. The results are displayed in Figure 1, with the x-axis
representing genomic position and the y-axis representing
time, and so each horizontal slice is a genome scan for one
time point. We plot a signed LOD score, with the sign repre-
senting the estimated direction of the QTL effect: Red indi-
cates that lines with the Cvi allele had a higher phenotype
average than the lines with the Ler allele; blue indicates that
lines with the Ler allele had a higher phenotype average than
the lines with the Cvi allele.

The most prominent QTL are on chromosomes 1 and 4; in
both cases the Cvi allele had a higher phenotype value than
the Ler allele. The chromosome 1 QTL affects later times,
and the chromosome 4 QTL affects earlier times. There is an
additional QTL of interest on distal chromosome 3, with the
Ler allele having a higher phenotype value at early times.

The SLOD and MLOD statistics combine the results across
time points, by taking the average or the maximum LOD,
respectively, at each genomic location. The results are in
Figure 2, A and B. Horizontal lines indicate the 5% genome-
wide significance thresholds, derived by a permutation test.

We also applied the estimating equations approach of Xiong
et al. (2011). This has two variants: a Wald statistic, denoted EE
(Wald), and a residual error statistic, denoted EE(Residual).
Results are displayed in Figure 2, C and D, again with horizontal
lines indicating the 5% genome-wide significance thresholds.

The 5% significance thresholds for the four methods,
derived from permutation tests with 1000 permutation
replicates, are shown in Table S1.

All four methods identify QTL on chromosomes 1, 4, and
5. The MLOD and EE(Wald) methods further identify a QTL

Figure 1 Signed LOD scores from single-QTL genome scans, with each
time point considered individually.

Figure 2 (A–D) The SLOD (A), MLOD (B), EE(Wald) (C), and EE(Residual)
(D) curves for the root tip angle data. A red horizontal line indicates the
calculated 5% permutation-based threshold.
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on chromosome 3, and the EE(Wald) method identifies
a further QTL on chromosome 2.

Multiple-QTL analysis

Methods that account for multiple QTL may improve power
and better separate evidence for linked QTL. We extended
the approach of Broman and Speed (2002) for function-valued
traits. Here we focus on additive QTL models and extend the
SLOD and MLOD statistics.

The penalized-SLOD criterion, with the 5% significance
threshold as the penalty, indicated a two-QTL model with QTL
on chromosomes 1 (at 60 cM) and 4 (at 43 cM). The penalized-
MLOD statistic indicated a three-QTL model, with an additional
QTL on chromosome 3 (at 76.1 cM). The positions of the QTL
on chromosomes 1 and 4 were changed slightly relative to the
inferred QTL model by the penalized-SLOD criterion; with the
penalized-MLOD criterion, the chromosome 1 QTL was at 62 cM
and the chromosome 4 QTL was at 39 cM.

Following an approach developed by Zeng et al. (2000),
we derived profile log-likelihood curves, to visualize the ev-
idence and localization of each QTL in the context of a multiple-
QTL model: The position of each QTL was varied one at a time,
and at each location for a given QTL, we derived a LOD score
comparing the multiple-QTL model with the QTL under con-
sideration at a particular position and the locations of all
other QTL fixed to the model with the given QTL omitted.
This profile is calculated for each time point, individually,
and then the SLOD (or MLOD) profiles are obtained by aver-
aging (or maximizing) across time points. The SLOD andMLOD
profiles are shown in Figure 3.

To further characterize the effects of the QTL in the
context of the inferred multiple-QTL models, we fitted the
selected multiple-QTL models at each time point, individu-
ally. For the models derived by the penalized-SLOD and
penalized-MLOD criteria, the estimated baseline function
and the estimated QTL effects, as a function of time, are
shown in Figure 4. The estimated QTL effects in Figure 4, B–D,
are for the difference between the Cvi allele and the Ler allele.

The estimated effects of the QTL on chromosomes 1 and
4 are approximately the same, whether or not the chromo-
some 3 QTL is included in the model. The chromosome 1
QTL has greatest effect at later time points, while the
chromosome 4 QTL has greatest effect earlier and over
a wider interval of time. For both QTL, the Cvi allele
increases the root tip angle phenotype. The chromosome 3
QTL, identified only with the penalized-MLOD criterion, has
an effect at early time points and only for a brief interval of
time, and for this QTL, the Ler allele increases the root tip
angle phenotype.

Simulations

To investigate the performance of our proposed approaches
and compare them to existing methods, we performed
several computer simulation studies. While numerous meth-
ods for QTL mapping with function-valued traits have been

described, we were unsuccessful, despite considerable ef-
fort, to employ the software for Yang et al. (2009), Yap
et al. (2009), Min et al. (2011), or Sillanpää et al. (2012).
Thus our main focus for comparison was to the estimating
equation approach of Xiong et al. (2011). This method has
been implemented only for a single-QTL genome scan, and
so we compare our approach to that method in the presence
of a single QTL. In these single-QTL models, we also consid-
ered a simple parametric approach: Fit growth curves for
each individual (Kahm et al. 2010) and then apply multi-
variate QTL analysis (Knott and Haley 2000) with the
estimated parameters as phenotypes. In the context of
multiple-QTL models, we considered only the two variants
of our own approach, the penalized-SLOD and penalized-
MLOD criteria.

The software used for these simulations is available at
http://github.com/kbroman/Paper_FunQTL.

Single-QTL models

To compare our approach to that of Xiong et al. (2011) and to
a simple parametric approach, in the context of a single-QTL
model, we considered the simulation setting described in Yap
et al. (2009), although exploring a range of QTL effects.

We simulated an intercross with sample sizes of 100, 200,
or 400 and a single chromosome of length 100 cM with six
equally spaced markers and with a QTL at 32 cM. The
associated phenotype was sampled from a multivariate nor-
mal distribution with the mean curve following a logistic
function, gðtÞ ¼ a=ð1þ be2rtÞ: The AA genotype had a = 29,

Figure 3 (A and B) SLOD (A) and MLOD (B) profiles for a multiple-QTL
model for the root tip angle data set.
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b = 7, r = 0.7; the AB genotype had a = 28.5, b = 6.5, r =
0.73; and the BB genotype had a= 27.5, b= 5, r= 0.75. The
shapes of the growth curves with these parameters are shown
in Figure S3. Each individual is observed at 10 time points.

The residual error was assumed to be multivariate
normal with a covariance structure cS. The constant c con-
trols the overall error variance, and S was chosen to have
one of three different covariance structures: (1) autoregres-
sive with s2 = 3, r = 0.6; (2) equicorrelated with s2 = 3,
r = 0.5; or (3) an “unstructured” covariance matrix, as
given in Yap et al. (2009) (shown in Table S2).

The parameter c was given a range of values, which de-
fine the percentage of phenotypic variance explained by the
QTL (the heritability). The effect of the QTL varies with
time; we took the mean heritability across time as an overall
summary. For the autoregressive and equicorrelated covari-
ance structures, we used c = 1, 2, 3, 6; for the unstructured
covariance matrix, we took c = 0.5, 1, 2, 3. The heritabil-
ities, as a function of time, for each covariance structure and
for each value of the parameter c, are shown in Figure S4.

For each of 10,000 simulation replicates, we applied our
SLOD and MLOD methods, using Haley–Knott regression
(Haley and Knott 1992) and the two versions of the method
of Xiong et al. (2011), EE(Wald) and EE(Residual). We fur-
ther applied a simple parametric approach: We fitted the
logistic growth model to each individual’s phenotype data,
using the R package grofit (Kahm et al. 2010), and then used
the estimated model parameters as phenotypes, applying
the multivariate QTL-mapping method of Knott and Haley
(2000). For all five approaches, we fitted a three-parameter
QTL model (that is, allowing for dominance).

The estimated power to detect the QTL as a function of
heritability due to the QTL, for n = 100, 200, 400 and for
the three different covariance structures, is shown in Figure
5. With the autocorrelated variance structure, all methods
other than the parametric approach gave similar power.
With the equicorrelated variance structure, EE(Wald) had
higher power than the other four methods, and the para-
metric approach was second best. In the unstructured vari-
ance setting, the EE(Wald) and MLOD methods worked
better than the other three methods. EE(Residual) did not
work well in this setting.

The precision of QTL mapping, measured by the root
mean square error in the estimated QTL position, is displayed
in Figure S5. Performance, in terms of precision, corresponds
quite closely to the performance in terms of power: When
power is high, the root mean square error of the estimated
QTL position is low, and vice versa.

A possible weakness of the SLOD and MLOD approaches,
in not making use of the function-valued form of the
phenotypes, is that the methods may suffer lower power in
the case of noisy phenotypes. To investigate this possibility,
we repeated the simulations with n = 200, adding indepen-
dent, normally distributed errors (with standard deviation 1
or 2) at each time point.

The estimated power to detect the QTL as a function of
heritability due to the QTL, for added noise with SD = 0, 1,
2 and the three different covariance structures, is shown in
Figure 6. (Corresponding estimates of QTL mapping preci-
sion are displayed in Figure S6.) The power of the SLOD,
MLOD, and EE(Residual) methods is greatly affected by the
introduction of noise. EE(Wald) and the parametric meth-
ods are relatively robust to the introduction of noise. Over-
all, the EE(Wald) method continued to perform best.

For smooth traits with autocorrelated errors, the SLOD
and MLOD methods work similarly to EE(Wald) and EE
(Residual). However, if we have large measurement error or
have different variance structure, the EE(Wald) method is
a robust choice. The parametric approach was more affected
by the nature of the residual variance structure than by the
addition of random noise.

In terms of computation time, in this simulation study,
the MLOD and SLOD methods were �3 times faster than EE
(Residual), and they were �265 times faster than the EE
(Wald) method, with five basis functions used in the latter.

Multiple-QTL models

To investigate the performance of the penalized-SLOD and
penalized-MLOD criteria in the context of multiple QTL, we
simulated data from the three-QTL model estimated from
the root tip angle data of Moore et al. (2013), considered in
the Application section.

We assumed that the mean curve for the root tip angle
phenotype followed a cubic polynomial, y = a + bt + ct2 +
dt3, and assumed that the effect of each QTL also followed
such a cubic polynomial. Fitting this parametric model
with the three penalized-MLOD criterion, we obtained the

Figure 4 (A–D) The regression coefficients estimated for the root tip
angle data set: the estimated baseline function (A) and the estimated
QTL effects (B-D). The red curves are for the two-QTL model (from the
penalized-SLOD criterion) and the blue dashed curves are for the three-
QTL model (from the penalized-MLOD criterion). Positive values for the
QTL effects indicate that the Cvi allele increases the tip angle phenotype.
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following estimates. The parameters of the baseline were (a,
b, c, d) = (20.238,2265.248, 229.405,259.771). The QTL
on chromosome 1 at 61 cM had parameters (0.209, 8.729,
1.602, 29.054). A second QTL, on chromosome 3 at 76 cM,
had parameters (21.887, 3.414, 24.220, 2.265). The third
QTL, on chromosome 4 at 40 cM, had parameters (2.003,
11.907, 228.647, 15.311). The baseline function and the
QTL effect curves are shown in Figure S7.

The four parameters for a given individual were drawn
from a multivariate normal distribution with mean defined
by the QTL genotypes and variance matrix estimated from
the root tip angle data as

S ¼

0
BB@

58:99 2177:77 185:11 245:44
2177:77 3; 848:70 27; 274:83 3; 595:37
185:11 27; 274:83 16; 897:56 29; 702:32
245:44 3; 595:37 29; 702:32 6; 096:71

1
CCA:

In addition, normally distributed measurement error
(with mean 0 and variance 1) was added to the phenotype
at each time point for each individual. Phenotypes are taken
at 241 equally spaced time points in the interval of 0–1. We
considered two sample sizes: n = 162 (as in the Moore et al.
2013 data) and twice that, n = 324.

We performed 2000 simulation replicates. For each repli-
cate, we applied a stepwise model selection approach with
each of the penalized-SLOD and penalized-MLOD criteria. The
simulation results are shown in Table 1.

The penalized-SLOD criterion had higher power to detect
the first and third QTL, while the penalized-MLOD criterion
had higher power to detect the second QTL. With the larger
sample size, the power to detect QTL increased, and the
standard error of the estimated QTL position decreased.

The estimated false positive rates at n = 162 were 3.3
and 0.9% for the penalized-SLOD and penalized-MLOD cri-
teria, respectively. At the larger sample size, n = 324, the
corresponding false positive rates were 4.1 and 0.8%.

Discussion

Automated phenotype measurement is an accelerating trend
across biological scales, from microorganisms to crop plants.
This push for increasing automation makes it feasible to
increase the dimensionality of phenotype data sets, for
example by adding time. The trend toward higher-dimensional
phenotype data sets from genetically structured populations
has created a need for new statistical genetic methods, and
computational speed can be an important factor in the ap-
plication of such methods.

Figure 5 Power as a function of
the percentage of phenotypic var-
iance explained by a single QTL.
The left column is for n = 100,
the center column is for n = 200,
and the right column is for n =
400. The three rows correspond
to the covariance structure (auto-
correlated, equicorrelated, and
unstructured). In each panel,
SLOD is in red, MLOD is in blue,
EE(Wald) is in brown, EE(Residual)
is in green, and parametric is in
black.
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Methods for the genetic analysis of function-valued
phenotypes have mostly focused on single-QTL models
(Ma et al. 2002; Yang et al. 2009; Yap et al. 2009; Xiong
et al. 2011). Bayesian multiple-QTL methods, using Markov
chain Monte Carlo, have also been proposed (Min et al.
2011; Sillanpää et al. 2012), but they can be computation-
ally intensive and not easily implemented. We propose two
simple LOD-type statistics that integrate the information
across time points and extend them, using the approach
of Broman and Speed (2002), for multiple-QTL model
selection.

The basis of our approach is the analysis of each time
point individually. This works well when the function-valued
trait is smooth, as in the data from Moore et al. (2013), and
has the benefit of providing results that are easily inter-
preted, such as the QTL effects displayed in Figure 4. With
unequally spaced time points or appreciable missing data,
the approach may require some modification, such as first
performing some interpolation or smoothing. The perfor-
mance of our approaches deteriorated with added noise,
but again this may be at least partly alleviated by pre-
smoothing. An important advantage of our approach is the
ability to incorporate information from multiple QTL in the
analysis of function-valued phenotypes, which should im-
prove power and lead to better separation of linked QTL.

A weakness of our approach is that it largely ignores the
correlations across time. Ma et al. (2002) and Yang et al.
(2009) paid careful attention to this aspect, using an auto-
regressive model for the residual variance matrix. Our cur-
rent neglect of this aspect may result in loss of efficiency,
particularly in the estimates of the QTL effects. However, by
ignoring this assumption we gain much speed, and our sim-
ulation studies indicate that the approach exhibits reason-
able power to detect QTL in many situations. The EE(Wald)
method of Xiong et al. (2011) showed the best performance
among all methods considered, although at the expense of
considerably greater computation time.

Figure 6 Power as a function of
the percentage of phenotypic vari-
ance explained by a single QTL,
with additional noise added to the
phenotypes. The left column has
no additional noise; the center
and right columns have indepen-
dent normally distributed noise
added at each time point, with
standard deviations 1 and 2, re-
spectively. The three rows corre-
spond to the covariance structure
(autocorrelated, equicorrelated, and
unstructured). In each panel, SLOD is
in red, MLOD is in blue, EE(Wald) is
in brown, EE(Residual) is in green,
and parametric is in black. The per-
centage of variance explained by the
QTL on the x-axis refers, in each
case, to the variance explained in
the case of no added noise.

Table 1 Simulation results for the SLOD and MLOD criteria, for
a three-QTL model, modeled after the Moore et al. (2013) data

Mean (SE) estimated location Power

n True location SLOD MLOD SLOD MLOD

162 61 60.7 (6.7) 61.0 (5.4) 88.7 54.5
76 64.4 (18.9) 71.1 (12.2) 11.8 14.6
40 39.9 (5.2) 40.0 (3.4) 82.0 76.9

324 61 61.1 (4.2) 61.2 (4.3) 100 58.7
76 71.9 (9.8) 74.4 (5.8) 30.7 43.3
40 39.9 (2.6) 40.1 (2.0) 99.8 91.1

Note that locations are in centiMorgans.
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Manichaikul et al. (2009) extended the work of Broman
and Speed (2002) by considering pairwise interactions among
QTL. Our approach may be similarly extended to consider
interactions.

An alternative approach to the QTL analysis of function-
valued traits is to first fit a parametric model to each
individual’s curve and then treat the estimated parameters
from such a model as phenotypes. (The method exhibited
less-than-ideal performance in our simulation study, likely
due to poor model fit with the simulated error structures.)
Multiple-QTL mapping methods could readily be applied to
each such parameter, individually. The advantage of our ap-
proach, to consider each time point individually, is in the
simpler interpretation of the results.

Software implementing our methods have been imple-
mented as a package for R (R Core Team 2013), funqtl
(https://github.com/ikwak2/funqtl).
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Figure S5 Root Mean Square Error (RMSE) of the es mated QTL posi on as a func on of the percent variance explained by
a single QTL. The first column is for n = 100, the second column is for n = 200 and the third column is for n = 400. The three
rows correspond to the covariance structure (autocorrelated, equicorrelated, and unstructured). In each panel, SLOD is in red,
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Figure S6 Root Mean Square Error (RMSE) of the es mated QTL posi on as a func on of the percent variance explained by
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The three rows correspond to the covariance structure (autocorrelated, equicorrelated, and unstructured). In each panel,
SLOD is in red, MLOD is in blue, EE(Wald) is in brown, EE(Residual) is in green, and parametric is in black. The percent variance
explained by the QTL on the x-axis refers, in each case, to the variance explained in the case of no added noise.
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Table S1 5% significance thresholds for the data from Moore et al. 2013,
based on a permuta on test with 1000 replicates.

Method Threshold
SLOD 1.85
MLOD 3.32
EE(Wald) 5.72
EE(Residual) 0.0559
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Table S2 The unstructured covariance matrix used in the single-QTL simula ons.

Σ =



0.72 0.39 0.45 0.48 0.50 0.53 0.60 0.64 0.68 0.68
0.39 1.06 1.61 1.60 1.50 1.48 1.55 1.47 1.35 1.29
0.45 1.61 3.29 3.29 3.17 3.09 3.19 3.04 2.78 2.53
0.48 1.60 3.29 3.98 4.07 4.01 4.17 4.18 4.00 3.69
0.50 1.50 3.17 4.07 4.70 4.68 4.66 4.78 4.70 4.36
0.53 1.48 3.09 4.07 4.68 5.56 6.23 6.87 7.11 6.92
0.60 1.55 3.19 4.17 4.66 6.23 8.59 10.16 10.80 10.70
0.64 1.47 3.04 4.18 4.78 6.87 10.16 12.74 13.80 13.80
0.68 1.35 2.78 4.00 4.70 7.11 10.80 13.80 15.33 15.35
0.68 1.29 2.53 3.69 4.36 6.92 10.70 13.80 15.35 15.77
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