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Abstract

Background: Gene- and pathway-based analyses offer a useful alternative and complement to the

usual single SNP-based analysis for GWAS. On the other hand, most existing gene- and pathway-

based tests are not highly adaptive, and/or require the availability of individual-level genotype and

phenotype data. It would be desirable to have highly adaptive tests applicable to summary

statistics for single SNPs. This has become increasingly important given the popularity of large-

scale meta-analyses of multiple GWASs and the practical availability of either single GWAS or

meta-analyzed GWAS summary statistics for single SNPs.

Results: We extend two adaptive tests for gene- and pathway-level association with a univariate trait

to the case with GWAS summary statistics without individual-level genotype and phenotype data.

We use the WTCCC GWAS data to evaluate and compare the proposed methods and several existing

methods. We further illustrate their applications to a meta-analyzed dataset to identify genes and

pathways associated with blood pressure, demonstrating the potential usefulness of the proposed

methods. The methods are implemented in R package aSPU, freely and publicly available.

Availability and implementation: https://cran.r-project.org/web/packages/aSPU/

Contact: weip@biostat.umn.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In spite of the tremendous success of genome-wide association stud-

ies (GWASs), due to modest to small effect sizes of the majority of

causal SNPs for complex and common disease, large sample sizes

and more powerful statistical tests are always needed. Furthermore,

even when some associated SNPs or loci are identified by the most

popular single SNP-based analysis, it is often extremely difficult to

offer a functional interpretation that can shed light on the underly-

ing biology. As alternatives, gene- and pathway-based analyses have

been proposed and applied for single traits, demonstrating their use-

ful and complementary roles (Fan et al., 2015; Pan, 2009; Schaid

et al., 2012; Wang et al., 2007, 2010; Wu et al., 2010). A statistical

challenge is that, due to unknown true association patterns, there is

no uniformly most powerful test to detect multiple SNP-single trait

associations; an association test may perform well for one dataset,

but not necessarily for another. For example, the presence of

non-associated SNPs will largely diminish the power of a standard

test if no effective SNP selection or weighting is adopted (Petersen

et al., 2013). Pan et al. (2014) proposed a data-adaptive (aSPU) ap-

proach based on estimating and selecting the most powerful test

among a class of so-called sum of powered score (SPU) tests, which

cover several popular tests as special cases, such as the burden test, a

variance component test and a univariate test. The main idea is to

use various values of a parameter to construct data-driven and vary-

ing weights for the SNPs, thus adaptive to unknown signal sparsity

and association directions among the multiple SNPs being tested.

Furthermore, Pan et al. (2015) extended the methodology to path-

way analysis (aSPUpath). In particular, two parameters are intro-

duced such that the test is adaptive at both the SNP and gene

levels. As demonstrated therein, due to their high data-adaptivity,

the two adaptive tests remained powerful across a wide range of

scenarios.
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However, the two adaptive tests for gene- and pathway-single

trait associations are only applicable to the case with individual-

level genotype and phenotype data. Due to various reasons, it is

often difficult for many researchers to obtain access to individual-

level data. At the same time, it is easier to obtain access to some

summary statistics, e.g. P-values, of individual SNPs in a GWAS. In

addition, use of some summary statistics is often necessary for prac-

tical meta analyses, which have become increasingly popular and

important for complex disease and traits (de Bakker et al., 2008).

Here we propose extending the two highly adaptive tests to the case

with only summary statistics for individual SNPs, demonstrating

their applications to a meta-analyzed GWAS dataset for blood pres-

sure (Ehret et al., 2011).

In numerical examples we compared our methods with gene-

based GATES (Li et al., 2011) and three pathway-based approaches,

GATES-Simes (Gui et al., 2011), HYST (Li et al., 2012) and

MAGMA (de Leeuw et al., 2015). All methods are for a single (uni-

variate) trait. GATES adopts an extended Simes procedure to correct

multiple testing while calculating the P-value quickly based on SNP

summary statistics. GATES-Simes extends the main idea of GATES

to extract the most significant gene-level P-value for a pathway,

whereas HYST uses Fisher’s method to combine multiple genes’

P-values. MAGMA is based on multiple regression. We also con-

sidered one gene set enrichment analysis (GSEA) method,

i-GSEAGWAS (Zhang et al., 2013), an extension of GSEA

(Subramanian et al., 2005) to GWAS summary statistics. Note that

here our goal is global association testing in the category of ‘self-

contained tests’ with a null hypothesis H0 that none of any genes in

a pathway is associated with disease, in contrast to enrichment or

competitive testing with a null hypothesis H0;E that the proportion

of associated genes in a pathway is no more than that in the rest of

the genes; since rejecting H0;E implies rejecting H0, a global testing

is often more powerful than an enrichment analysis (Goeman et al.,

2007).

The proposed methods are available in R package aSPU, which

is downloadable from CRAN.

2 Methods

We first assume that individual genotype and phenotype data are

available, facilitating the derivation of our proposed methods later.

Suppose for individual i ¼ 1; � � � ;n, we have a quantitative or binary

trait Yi, and a vector of the genotype scores for k SNPs

Xi ¼ ðXi1; � � � ;XikÞ0, possibly drawn from either a single gene or a

pathway with multiple genes. As usual we use the additive coding

for each SNP: Xij ¼ 0, 1 or 2 is the count of an allele at SNP j for

subject i. We also assume a vector of covariates Wi. We adopt a gen-

eralized linear model (GLM):

g½EðYiÞ� ¼ b0 þ
Xk

j¼1

Xijbj þ a0Wi;

where gðÞ is the link function (i.e. the identity function for a quanti-

tative trait, or a logit function for a binary trait). We would like to

test the null hypothesis H0 : b ¼ ðb1; � � � ; bkÞ0 ¼ 0; that is, there is no

association between any SNP and the trait under H0. The score vec-

tor U ¼ ðU1; � � � ;UkÞ0 for b is

U ¼
Xn

i¼1

ðYi � l̂0;iÞXi;

where l̂0;i ¼ ÊðYijH0Þ ¼ g�1ðb̂0 þ â0WiÞ is the estimated mean of Yi

in the null model (under H0). The covariance matrix of U can be

estimated as

dCovðUjH0Þ ¼
Xn

i¼1

ðYi � l̂0;iÞ2ðXi �XÞðXi �XÞ0

with its mean under H0 as

E½dCovðUjH0Þ� ¼
Xn

i¼1

r2
i RX; (1)

where r2
i ¼ VarðYijH0Þ and RX ¼ CovðXÞ.

2.1 A gene-based adaptive test with summary statistics
Now, suppose that we do not have individual-level data (Yi, Xi)’s

but only single SNP-based summary statistics, say Z-scores

Z ¼ ðZ1; . . . ;ZkÞ0 with Zj ¼ b̂j=seðb̂j Þ � Uj=seðUjÞ for j ¼ 1; � � � ; k;

the approximation is based on the asymptotic equivalence between

the Wald test and the score test. A key observation is that

CovðZj;ZlÞ ¼ CorrðZj;ZlÞ

� CorrðUj;UlÞ � CorrðXij;XilÞ;

where the last approximation is based on Eq. (1). Note that Corr(X)

can be easily estimated from some reference panel, e.g. the CEU

sample in the Hapmap data or 1000 Genome data, for a similar tar-

get population. Accordingly, we obtain an estimate of CorrðZj;ZlÞ,
say R.

Mimicking the SPU and aSPU tests for individual genotype and

phenotype data, we can now define the corresponding tests with

only summary statistics Z:

SPUsðcÞ ¼ SPUsðc; ZÞ ¼
Xk

j¼1

Zc
j ;

aSPUsðZÞ ¼ min
c2C

PSPUsðc;ZÞ; (2)

where PSPUsðc;ZÞ is the P-value of the SPUs ðc; ZÞ test, and C ¼ f1; 2; . . . ;

8;1g is often used. Note that since SPUsðc; ZÞ / jjZjjc ! maxjjZjj as

an even integer c!1, we define SPUsð1; ZÞ ¼ maxjjZjj.
An optimal choice of c depends on the unknown SNP-trait asso-

ciation patterns. For example, if most SNPs are (almost) equally

associated with the trait in the same direction, then the burden test

SPUs(1) will be (nearly) most powerful; if only one or few SNPs are

associated with the trait, then using a larger c, e.g. SPUs(8) or

SPUs(1), is expected to be more powerful; on the other hand, if the

truth is between the above two extremes, then using an intermediate

1 < c < 8, e.g. SPUs(2) that is similar to a variance-component test

like KMR or SKAT (Liu et al., 2007; Pan, 2011; Wu et al., 2010),

may have higher power. Note that SPUs(1) is exactly the same as

the univariate minimum P-value method most often used in GWAS.

Since we do not know the optimal value of c, we try multiple ones in

C and then estimate and select the best one by aSPUs. Note that, in

our experience, often SPUs(8) and SPUs(1) give almost identical re-

sults, hence we do not try any c values between 8 and1 in C.

By the asymptotic distribution of U, we know that for a large n,

under H0, Z follows a multivariate normal distribution N(0, R),

where R is the correlation matrix of Xi that can be estimated from

some reference panel as discussed. Based on this known null distri-

bution of Z, we use Monte Carlo simulations to obtain the P-values

of the SPUs and aSPUs tests. Specifically, (i) we generate
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independent ZðbÞ � Nð0;RÞ for b ¼ 1; � � � ;B; (ii) calculate the null

SPU test statistics SPUsðc; ZðbÞÞ; (iii) the P-value for SPUsðc; ZÞ isPB
b¼1½IðjSPUsðc; ZðbÞÞj � jSPUsðc; ZÞjÞ þ 1�=ðBþ 1Þ, and that for

SPUsðc; ZðbÞÞ is P
ðbÞ
c ¼

P
b1 6¼b IðjSPUsðc; Zðb1ÞÞj � jSPUsðc; ZðbÞÞjÞ=

ðB� 1Þ; (iv) calculate aSPUsðZðbÞÞ ¼ minc2CP
ðbÞ
c ; (v) finally the

P-value for the aSPUs test is PaSPUs ¼
PB

b¼1½IðaSPUsðZðbÞÞ �
aSPUsðZÞÞ þ 1�=ðBþ 1Þ.

Sometimes only the P-values for individual SNPs are available

while we do not know the association direction for each SNP. In this

case, we calculate jZjj ¼ U�1ð1� pj=2Þ, where pj is the P-value for

SNP j and UðÞ is the CDF of the standard normal distribution

N(0, 1). Then we will replace Zj’s by jZjj’ s in the above formula (2)

(and do so similarly for the null statistics too).

2.2 A pathway-based adaptive test with

summary statistics
The idea of substituting a Score vector with Z-scores can be simi-

larly extended to an adaptive pathway-level test (Pan et al., 2015).

Given a pathway S with jSj genes, we partition its Z-scores as

Z ¼ ðZ01:; � � � ;Z0jSj:Þ
0 with subvector Zg: ¼ ðZg1;Zg2; � � � ;Zgkg

Þ0 for

gene g (with kg SNPs). Then we define the gene- and pathway-based

SPU tests as

SPUðc; gÞ ¼ jjZg:jjc ¼
 Xkg

j¼1

Zc
gj=kg

!1=c

;

PathSPUðc; cG; SÞ ¼
X
g2S

SPUðc; gÞcG ;

where two integers c > 0 and cG > 0 are used to adaptively weight

the SNPs and genes respectively. For example, a larger cG (or c) is

more effective when there are a smaller number of genes (or SNPs)

associated with the trait. Since the optimal values of (c; cG) are un-

known, to adaptively choose (c; cG), we propose

aSPUsPathðSÞ ¼ min
c2C;cG2Cg

PPathSPUðc;cG ;SÞ;

aiming to select the most powerful one from multiple PathSPU tests.

We used C ¼ f1; 2; . . . ;8;1g and Cg ¼ f1; 2;4; 8g as in Pan et al.

(2015). A Monte Carlo simulation scheme as described for the SPUs

and aSPUs tests is used to obtain the P-values. However, now the di-

mension of Z is possibly larger, leading to a much larger correlation

matrix R. For computational efficiency, we assume that any SNPs in

different chromosomes are independent, leading to a block-diagonal R.

Given that most genes and pathways will not be significant in

most applications, we employ a stage-wise strategy to gradually in-

crease the simulation number B to save computing time for aSPUs

and aSPUsPath. In the later applications, we first performed B ¼
5000 simulations for all genes and pathways, and then increased

B to 106 or 107 for those genes (or 105 for pathways) with a

P-value < 0.003.

3 Applications

3.1 WTCCC data
To demonstrate the validity and performance of our proposed

method, we designed a ‘Control–Control’ experiment and a usual

Case–Control experiment using Wellcome Trust Case Control

Consortium (WTCCC) GWAS data for Crohn’s disease (CD)

(Consortium, 2007). CD is an autoimmune disease with a strong

genetic component. The WTCCC GWAS dataset contains about

2000 CD-affected cases and about 3000 controls with a total of 500

568 SNPs. Following the WTCCC’s quality control (QC) recom-

mendations, we removed subjects and SNPs that did not pass the

QC criteria, resulting in 469 612 SNPs in 1748 case subjects and

2938 control subjects. We further removed SNPs with MAF <5%

since we would use a small reference panel to infer the LD structure

for a set of SNPs.

In a Control–Control experiment, we randomly divided the con-

trols into two groups, each with 1469 samples, then tested for pos-

sible association between the group indicator and a gene or a

pathway. Since no association was expected, the goal was to investi-

gate how well a method could control type I errors or false positives.

In a Case–Control analysis, the two groups contained 1748 cases

and 2938 controls respectively, and we’d like to see the power of a

method to detect possible associations. We calculated the Z-score

for each SNP based on individual-level data, then used only the

Z-scores in subsequent analyses for any summary statistics-based

method. We analyzed 4572 genes mapped to 186 KEGG pathways.

The significance threshold after the Bonferroni correction was

0.05/4572 ¼ 1:09	 10�5 for gene-based analysis, or 0:05=186 ¼
0:000268 for pathway-based analysis. The simulation number of

B ¼ 106 was used as a default, though we also used B ¼ 105 for

comparison in aSPUs and aSPUsPath.

3.1.1 Choice of the reference panels

We first investigated how the choice of the reference panels in esti-

mating LD among SNPs might influence the performance. We con-

sidered three ways to estimate a correlation matrix R among the

SNPs: using (i) 90 Hapmap CEU samples, (ii) 100 randomly chosen

WTCCC control samples and (iii) the whole 2938 WTCCC

controls.

Figure 1 shows the QQ plots of the aSPUs P-values based on

each of the three ways to estimate the correlation matrix for the

Control–Control experiment (upper row) and Case–Control experi-

ment (lower row). Based on the Control–Control analysis, we con-

clude that using the Hapmap samples seemed to give a bit inflated

type I errors while the other two performed well. The less desirable

performance of using the Hapmap samples could be due to the small

sample size, leading to unstable estimates. However, by comparison

with that of using 100 WTCCC controls, it was more likely due to

some inherent differences between the two panels.

Treating using the whole WTCCC controls as the gold standard,

we compared in more details about the estimated P-values in

Figure 2. Most points are on the identity line. However some points

are above the line, implying that using the Hapmap panel over-esti-

mated the significance levels of several genes (i.e. with smaller P-

values). Nevertheless, the agreement of the aSPUs P-values based on

the reference panels was high: their correlation coefficients in both

experiments were 0.98. In summary, the performance using any ref-

erence panel was mostly satisfactory with an estimated inflation fac-

tor k close to 1 (e.g. k ¼ 1:07 for the Hapmap panel for the

Control–Control experiment of the WTCCC data).

For comparison, we also included the QQ-plots for GATES in

Supplementary Figure S1. Since GATES uses a few most significant

P-values to reach a gene-level P-value, it is more robust to estima-

tion errors of the LD structure among SNPs, giving less inflated sig-

nificance levels in the extreme. However, due to its numerical
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approximations in P-value calculations, it had slightly higher infla-

tion factors (e.g. k ¼ 1:2 for the Hapmap panel for the Control–

Control experiment of the WTCCC data).

3.1.2 Choice of simulation number

Next we investigated the effects of the simulation number B on the

P-value of the aSPUs test. Figure 3 compares the results with B

¼ 105 versus B ¼ 106; we used either the 100 Hapmap samples or

the whole WTCCC controls to estimate the correlation matrices in

the Control–Control or Case–Control analysis. Overall there was

barely any difference between using B ¼ 105 and B ¼ 106. As ex-

pected, the more significant a P-value, a larger B is required. In par-

ticular, B ¼ 106 would be sufficient to estimate P-values � 0:00001

for most genes.

3.1.3 Pathway analysis

We first investigated how the choice of the reference panel might in-

fluence the performance of a pathway-level test. Again we used ei-

ther the 90 Hapmap samples or all WTCCC controls to estimate the

correlation matrices. Figure 4 compares the results for each of the

three methods, aSPUsPath, GATES-Simes and HYST. Perhaps due

to more SNPs in a gene set (pathway), aSPUsPath appeared to be

more robust than aSPUs to estimation errors using a small reference

panel. Again GATES-Simes was very robust due to its use of only a

few top SNPs and genes to construct its test statistic. GATES-Simes

identified the same 5 pathways with any choice of the reference pan-

els based on the threshold of P < 0.00025. HYST seemed to be

more influenced by incorrectly estimated correlation matrices (due

to its using Fisher’s method to combine the P-values of all the genes

in a pathway). HYST identified the same 3 pathways using either

the Hapmap panel or 100 WTCCC controls. However, it identified

12 pathways using all WTCCC controls as the reference panel. This

indicates that the accuracy of estimating the correlation matrix is

critical to HYST. In comparison, aSPUsPath identified 17 significant

pathways using either the 100 or all WTCCC controls as the refer-

ence panel, among which 15 pathways were common; the Pearson

correlation between the two sets of the P-values was 0.998. Using

the Hapmap panel, aSPUsPath identified 16 significant pathways,

among which 11 pathways were common with those identified by

using the whole WTCCC control as the reference panel.
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versus all WTCCC controls for three pathway-level tests. The dotted lines indi-

cate the Bonferroni-corrected significance threshold. The P-values <0.00001

pointed as 0.00001 for easier comparisons among plots
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Table 1 shows 17 highly significant KEGG pathways with P-

values less than 0.00001 by any of the three methods. The

aSPUsPath identified nine such highly significant pathways using ei-

ther all or 100 WTCCC controls as the reference panel, a much

larger number than those of the other two methods, suggesting pos-

sibly higher power of aSPUsPath for the WTCCC data.

Furthermore, the close performance between using the two sets of

the WTCCC controls as reference panels suggested that using 100

samples from the corresponding population worked well enough in

identifying significant pathways.

The five KEGG pathways that have been confirmed to be associ-

ated with susceptibility to CD by meta-analysis and replication stud-

ies (Franke et al., 2010; Jostins et al., 2012; Wang et al., 2010) are

all among the 17 significant pathways.

We also performed analysis with one GSEA method,

i-GSEA4GWAS, but it did not find any significant pathway.

3.2 ICBP data
We illustrate the application of the methods to the summary statis-

tics of a meta analysis by the International Consortium for Blood

Pressure Genome-Wide Association Studies (ICBP GWAS) (Ehret

et al., 2011). The data include the P-values of 2.6 million SNPs for

the diastolic blood pressure (DBP) based on the discovery sample of

29 studies with 69 395 individuals of European ancestry. We ob-

tained the genomic coordinates of the SNPs and genes according to

the human reference genome hg19, and assigned SNPs within 2 kb

upstream or downstream a gene to the gene using software

MAGMA (de Leeuw et al., 2015). About 1 095 843 (41.04%) SNPs

were mapped into at least one of 17543 genes. We set the gene-level

significance threshold at 0.05/17543 ¼ 2:85	 10�6 based on the

Bonferroni correction. We used the Hapmap CEU reference panel to

estimate the correlations among the SNPs, downloaded from the

Plink website (Purcell et al., 2007).

3.2.1 Gene-based analysis

Figure 5 shows the significant genes identified by aSPUs, GATES (Li

et al., 2011), VEGAS (Liu et al., 2010) and MAGMA (de Leeuw

et al., 2015). We implemented the first two methods but used the

original software for the latter two. In total 49 significant genes

were identified by at least one method, in which 14 were common

across all the methods. In comparison with a single SNP-based ana-

lysis, Ehret et al. (2011) identified 29 significant independent SNPs

in 28 loci/genes for SBP and/or diastolic BP (DBP) based on a much

larger sample combining both the discovery and validation samples

with up to 133 661 additional individuals; even so, if only SBP was

considered, 4 of the 29 SNPs were no longer significant. In contrast,

as shown in Figure 5, 12 genes out of the 28 loci were detected by

gene-based testing with a much smaller sample size of the discovery

sample. In fact, based on single SNP analysis of only the discovery

sample as used here, only 8 of the 29 independent SNPs/loci in

Table 1 of Ehret et al. (2011) were significant. The Manhattan plots

for the various methods are shown in Supplementary Figure S5.

Since GATES is essentially a univariate method with a modified

Simes procedure for multiple testing adjustment, as expected, its re-

sults were similar to that of SPUs(1), which is the univariate min-

imum P-value method: SPUs(1) detected 32 associated genes,

among which 28 genes overlapped with those of GATES; in com-

parison, SPUs(1) and SPUs(2) identified 25 and 28 significant genes,

among which only 17 and 20 genes were common to those of

GATES. On the other hand, the test statistic of VEGAS isPk
j¼1 Z2

j ¼ SPUsð2Þ, though VEGAS was implemented differently in T
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SNP/gene mapping and covariance estimation (Liu et al., 2010), we

would still expect that VEGAS and SPUs(2) performed similarly: it

was confirmed that 21 of the 28 genes identified by SPUs(2) over-

lapped with that of VEGAS.

The gene ULK4 was uniquely identified by aSPUs. As shown in

Figure 6, gene ULK4 contains many nearly significant SNPs and

many non-significant SNPs, requiring an adaptive test like aSPUs

with effective SNP weighting (or selection) to detect it. For gene

HIST1H4C that was identified by GATES but not by other meth-

ods, it contained 11 SNPs; only one of the SNPs had a P-value

around 2e-7 while those for other SNPs were all around 0.1 or 0.01.

The P-values of aSPUs, GATES, MAGMA and VEGAS were 4.70e-

6, 1.29e-6, 0.0015 and 0.00023 respectively. Due to the sparse sig-

nal with only one significant SNP, it favored a univariate method

like GATES; nevertheless, due to the inclusion of SPU(1) (with a P-

value of 2.0e-6), the P-value of the aSPUs test was almost signifi-

cant. Now consider another gene BRAP that was identified by

aSPUs, VEGAS and MAGMA but not by GATES. It contained 10

SNPs, 6 of which were with a P-value around 2e-6 while other SNPs

were much less significant. The P-values of aSPUs, GATES,

MAGMA and VEGAS were 1.3e-6, 5.06e-6, 2.065e-7 and 1e-7 re-

spectively, confirming an advantage of aSPUs in accumulating non-

sparse and weak signals with multiple moderately associated SNPs.

3.2.2 Pathway-based analysis

Finally we conducted a pathway-level analysis. We used the Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathways (Kanehisa

et al., 2010) downloaded from MSigDB (Subramanian et al., 2005).

There were 186 pathways with 4874 genes and 309 347 SNPs

mapped for trait DBP. We restricted the analysis to SNPs with MAF

�5%. We randomly removed some adjacent SNPs within 50kb

in high LD with r > 0.9 based on the genotype data of the

Hapmap CEU sample (release 2). We set the significance threshold

at 0:05=186 ¼ 0:000268 based on the Bonferroni correction.

In total 42 pathways were identified to be significant, including

24 by aSPUsPath, 38 by GATES-Simes, 34 by Hyst and 7 by

MAGMA, as shown in Figure 7. Here GATES-Simes and Hyst iden-

tified more pathways than aSPUsPath and MAGMA. Nevertheless,

aSPUsPath uniquely identified ‘hsa04010 MAPK signaling path-

way’, which contains 254 genes, including 4 known BP-related genes

in Table 1 of Ehret et al. (2011); out of a total of 16503 SNPs in this

pathway, 55, 21 and 6 SNPs were significant at P < 1e-5, 1e-6 and

1e-7 respectively, demonstrating multiple moderate associations (in

multiple genes) and thus lower power of a univariate test like

GATES-Simes.

4 Discussion

We have proposed two adaptive tests, aSPUs and aSPUsPath, re-

spectively for gene- and pathway-level association analyses of a uni-

variate trait with the availability of only summary statistics, such as

Z-statistics or P-values, for individual SNPs. With only summary

statistics like Z-statistics or P-values, one has to recourse to some

reference panel to estimate LD or correlations among SNPs, which
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Fig. 7. Venn diagram for the significant KEGG pathways identified by

aSPUsPath, GATES-Simes, HYST and MAGMA, for trait DBP
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Fig. 5. Venn diagram for the significant genes identified by aSPUs, VEGAS,

GATES and MAGMA, for trait DBP. The genes with a star (*) are BP-related

genes in Table 1 of Ehret et al. (2011)

Fig. 6. The significant gene ULK4 that was uniquely identified by aSPUs. The

locus was also one of 28 loci identified by Ehret et al. (2011) by single SNP

analysis with a much larger sample size
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might influence the performance of subsequent association testing.

Overall, the P-values calculated from using different panels were

similar as shown in our analysis of the WTCCC data. However, de-

pending on the reference panels being used, the results for a small

number of the genes or pathways could be different. Hence, caution

must be taken, and an independent validation on any detected asso-

ciations based on summary statistics becomes more important.

We have further illustrated the application of the proposed meth-

ods to a meta-analyzed GWAS data, demonstrating their usefulness

as compared to the popular single SNP-based analysis. In addition,

we have compared their performance with several other existing

tests. Since there is no uniformly most powerful test for multiple

SNPs, it would be desirable to have an adaptive test that can ro-

bustly maintain high, not necessarily highest, power across various

scenarios, which motivated our proposed two tests (Pan et al., 2014,

2015). Our proposed tests offer an alternative and complement to

existing gene- and pathway-level association testing. We have de-

veloped an R package aSPU to facilitate their use.
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