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Abstract

Summary: To identify novel genetic variants associated with complex traits and to shed new insights on

underlying biology, in addition to the most popular single SNP-single trait association analysis, it would be

useful to explore multiple correlated (intermediate) traits at the gene- or pathway-level by mining existing

single GWAS or meta-analyzed GWAS data. For this purpose, we present an adaptive gene-based test

and a pathway-based test for association analysis of multiple traits with GWAS summary statistics. The

proposed tests are adaptive at both the SNP- and trait-levels; that is, they account for possibly varying

association patterns (e.g. signal sparsity levels) across SNPs and traits, thus maintaining high power across

a wide range of situations. Furthermore, the proposed methods are general: they can be applied to mixed

types of traits, and to Z-statistics or p-values as summary statistics obtained from either a single GWAS

or a meta-analysis of multiple GWAS. Our numerical studies with simulated and real data demonstrated

the promising performance of the proposed methods.

Availability: The methods are implemented in R package aSPU, freely and publicly available at: https:

//cran.r-project.org/web/packages/aSPU/.

Contact: weip@biostat.umn.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In spite of the success of genome-wide association studies (GWAS)

in identifying thousands of reproducible associations between single

nucleotide polymorphism (SNPs) and complex diseases/traits, in general

the identified genetic variants can explain only a small proportion of

heritability (Manolio et al. 2009). A main reason is due to small effect

sizes of genetic variants, raising both challenges and opportunities in

developing more powerful analysis strategies. Among others, endeavors

in the following three directions have been undertaken. First, due to

polygenic effects (with small effect sizes) on complex traits, instead of

the popular single SNP-single trait analysis, it may be more powerful to

conduct gene- and pathway-level association tests (Lin and Tang, 2011;

Wu et al. 2010; Pan et al. 2014; Li, et al. 2011; Gui et al. 2011; Li et al.

2012; Pan et al. 2015). However, most of the existing association tests

are based on the use of individual-level genotypic and phenotypic data,

while quite often only summary statistics for single SNPs are available.

Thus, some association tests for a single trait but applicable to GWAS

summary statistics have appeared, including GATES (Li et al. 2011),

GATES-Simes (Gui et al. 2011), HYST (Li et al. 2012), and aSPUs

and aSPUsPath (Kwak and Pan, 2016). Second, while many GWAS have

collected multiple (intermediate) traits, due to pleiotropic effects, multiple

correlated (intermediate) traits, e.g. neuroimaging endophenotypes (Shen

et al. 2010; Zhang et al. 2014), can be used to boost power and illuminate

on underlying biological mechanisms as compared to popular disease-

based single trait analyses; see a review by Yang and Wang (2013). Most

of the existing association tests for multiple traits are based on individual-

level data (Basu et al. 2013; Tang and Ferreira 2012; Yang et al 2010;

Zhang et al. 2014; Wang et al. 2015; Fan et al. 2015, 2016; Wang et al.

2016) with only few exceptions such as MGAS (Sluis et al. 2015) and

metaCCA (Cichonska et al. 2016). Third, to increase the sample size,

large consortia are being formed, aiming for meta analysis of multiple

GWAS, for which often only summary statistics for single SNP-single trait

associations, rather than individual-level genotypic and phenotypic data,

are available. Hence it is necessary to develop methods that are applicable
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to only summary statistics. Motivated by the above three considerations,

here we present such tests.

To our knowledge, there are only two existing tests that are for gene-

or pathway-based analysis of multiple traits and applicable to summary

statistics. MGAS (Sluis et al. 2015) uses an extended Simes procedure

and behaves like a univariate minimum p-value approach, while metaCCA

(Cichonska et al. 2016) is based on canonical correlation analysis (CCA)

of multiple traits and multiple SNPs, which is related to MANOVA and

the GEE-score test (Zhang et al. 2014; Kim et al. 2016); the latter two may

lose power in some situations with multiple but relatively sparse and weak

association signals between the traits and SNPs (Pan et al. 2014; Zhang

et al. 2014).

Accordingly, it would be useful to extend adaptive tests for multiple

trait-single SNP (Kim et al. 2015) or for single trait-multiple SNP

associations (Kwak and Pan, 2016) with summary statistics, or for multiple

trait-multiple SNP associations with individual-level data (Kim et al.

2016), to the current case of multiple trait-multiple SNP associations with

only GWAS summary statistics, which is the aim here.

In addition, we propose a novel Monte Carlo simulation method based

on a matrix normal distribution to estimate the p-values for our proposed

tests, which is well justified by known asymptotic theory that is suitable

for large GWAS. In our proposed approach, we use a reference panel to

estimate linkage disequilibrium (LD) among physically nearby SNPs; in

contrast, metaCCA uses a similar method to estimate a joint covariance

matrix for both the multiple traits and multiple SNPs, possibly explaining

why it requires a large sample size of the reference panel to perform well,

as to be confirmed in our later simulations. We also note that in MGAS,

instead of individual-level genotypic data in a reference panel, p-values

as summary statistics are used to empirically estimate LD among SNPs,

which may lead to non-positive definite correlation matrices as numerically

shown in Kwak and Pan (2016).

Finally we note that our proposed methods are general with a wide

range of applications. For example, the multiple traits can be mixed types:

some may be quantitative while others binary; the summary statistics for

single SNP-single trait associations, as either Z-statistics or p-values, can

be obtained from either a single GWAS or a meta-analysis of multiple

GWAS (with any valid test being applied). It is noteworthy to point out that

the current version of metaCCA requires an equal sample size for all SNP-

trait pairs, which is too restrictive for meta-analyzed GWAS. For example,

the sample sizes for the SNP-trait summary statistics in a real dataset to

be analyzed here varied dramatically, rendering the non-applicability of

metaCCA.

We will validate the proposed methods using the Welcome Trust

Case Control Consortium (WTCCC) GWAS data (WTCCC 2007), then

illustrate their applications to a meta-analyzed dataset from the Genetic

Investigation of ANthropometric Traits (GIANT) consortium (Randall

et al. 2013). We will compare our methods with MGAS and metaCCA,

demonstrating the promising performance and advantages of our methods.

2 Methods

2.1 Notation

Suppose there are d SNPs (e.g. in a gene for gene-based testing) with

additive genotype scores g = (g1, · · · , gd)′, where gj is the number

of minor alleles of the jth SNP; there are m > 1 quantitative or binary

phenotypes Y = (Y1, ..., Ym)′; let c = (c1, · · · , cl)′ denotes a set of

covariates. We first consider one phenotype Yh by applying a generalized

linear model:

g[E(Yh)] = βh0 +
d

∑

j=1

gjβhj + αh
′c,

where g() is a canonical link function (i.e. the identity function for a

quantitative trait, or a logit function for a binary trait). We are interested

in testing H0 : βhj = 0 for all h = 1, · · · ,m and j = 1, · · · , d.

For a given dataset {(Yih,gi, ci) : i = 1, ..., n} with n subjects, the

score vector Uh = (Uh1, · · · , Uhd)
′ for βh is

Uh =
n
∑

i=1

(Yih − µ̂0,ih)gi,

where µ̂0h,i = Ê(Yih|H0) = g−1(β̂0h + α̂′ci) is the estimated mean

of Yih in the null model (under H0).

Kim et al. (2016) constructed an adaptive test for multi-trait and multi-

SNP association using the score vector. However, in the current context

without individual-level data, we cannot directly calculate Uhj ’s as given

in the formula.

Here we assume that we only have summary statistics, say an m× d

matrix of Z scores, Z. Each elementZhj , from thehth row and jth column

ofZ, represents a Z score for testing association between thehth phenotype

and the jth SNP. A Z score is (asymptotically) a weighted version of an

element in the score vector: Zhj = β̂hj/se(β̂hj) ≈ Uhj/se(Uhj); the

approximation is based on the asymptotic equivalence between the Wald

test and the Score test. Taking the Z scores in place of the score vector has

been proposed to test for multitrait–single SNP associations (Kim et al.

2015) and single trait–multiple SNP associations (Kwak and Pan, 2016).

2.2 Gene-based tests

We extend the gene-based tests based on individual-level data (Kim

et al. 2016) to those based on summary statistics. Specifically, we define a

test statistic for single trait-multiple SNP association and that for multiple

trait–multiple SNP association as

SPUs(γ1;Z(h)) = ||Z(h)||γ1
=





d
∑

j=1

Zγ1

hj





1/γ1

,

MTSPUsSet(γ1, γ2;Z) =
m
∑

h=1

(SPUs(γ1;Z(h)))
γ2 .

where Z(h) represents the hth row vector of matrix Z; i.e. the Z scores

for the hth trait. Two scalars γ1 ≥ 1 and γ2 ≥ 1 controls the extents of

weighting on the SNPs and traits respectively. For example, a larger γ1
(or γ2) is expected to yield higher power if there are a smaller number

of the SNPs (or traits) with truly non-zero associations (i.e. with the

corresponding βhj 6= 0). As discussed in more details in Kim et al.

(2016), MTSPUsSet(1, 1) is like a burden test (Shen et al. 2010), while

MTSPUsSet(γ1, γ2) for large values of γ1 and γ2 is effectively equivalent

to a univariate minimum p-value test on all single SNP-single trait pairs;

MTSPUsSet(2, 2) is closely related to a variance-component score test

in kernel machine regression (Maity et al. 2012) and nonparametric

MANOVA or distance-based regression (McArdle and Anderson 2001;

Wessel and Schork 2006; Schaid 2005).

Since the optimal values of (γ1, γ2) are unknown, we propose an

adaptive test to data-adaptively choose (γ1, γ2):

MTaSPUsSet(Z) = min
γ1∈Γ1,γ2∈Γ2

p(γ1,γ2;Z),

where p(γ1,γ2;Z) is the p-value for MTSPUsSet(γ1, γ2;Z), and by

default we use Γ1 = {1, 2, 4, 8} and Γ2 = {1, 2, 4, 8}.

A main innovation here is to use a matrix normal distribution (Gupta

and Nagar 1999; Zhou 2014) to obtain p-values based on the known

asymptotic normal distribution of the Z scores under H0. Specifically,

denote Z(i) as the ith row vector, and Zj as the jth column vector (i.e.
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the Z scores for jth SNP) of Z. If the sample size is large (with relatively

small numbers of traits and SNPs), by the standard asymptotics for the Z

scores, it is reasonable to assume that the null distribution of Z is a matrix

normal distribution:

Z ∼ MNm×d(0m×d,P,R),

where 0m×d is the m× d matrix with 0’s. It is equivalent to saying that

vec(Z) ∼ Nm∗d(0m∗d,R⊗P), (1)

where vec(Z) is formed by stacking the columns of Z, ⊗ is the Kronecker

product, and 0m∗d is a 0 vector of length m ∗ d.

From equation (1), We see that Zj/
√

Rjj follows a normal

distribution with mean 0 and covariance matrix P, and that Z(i)/
√
Pii

follows a normal distribution with mean 0 and covariance matrixR (Zhou,

2014). Since P and R are correlation matrices with Rjj = Pii = 1, we

obtain

Zj ∼ Nm(0m,P) and Z(i) ∼ Nd(0d,R).

Following Kim et al. (2015), we propose excluding the SNPs with

small p-values (e.g. < 0.05) and using a large subset of the remaining null

SNPs to estimate P with the sample correlation matrix of the Z scores. For

R, as shown by Kwak and Pan (2016) and others, it can be approximated by

the sample correlation matrix of the SNPs using a reference panel similar

to the study population. For example, we used 1000G Phase I version 3

Shapeit2 Reference data downloaded from the KGG software website (Li

et al. 2012); it contains about 81.2 million polymorphic markers on 2,504

samples released in September 2014. By default, we used 379 CEU (Utah

Residents with Northern and Western Ancestry) samples.

Finally we note that, based on the asymptotic null distribution of

vec(Z) in (1), we can construct a score test (if Z is obtained by the

univariate score test or its asymptotically equivalent Wald test):

TSco = vec(Z)′(R⊗P)−1vec(Z),

in which ifR⊗P is not of full rank, a generalized inverse is used. Although

TSco has an asymptotic χ2
d with degrees of freedom d = rank(R ⊗ P),

it may not work well for a high-dimensional R ⊗ P, thus, as for

MTaSPUsSet, we will use a single layer of Monte Carlo simulations to

calculate its p-value.

As discussed in Zhang et al. (2014) and Kim et al. (2016), the score test

is similar to CCA and MANOVA, hence we expect that TSco will perform

similarly to metaCCA, as to be confirmed.

2.3 Pathway-based tests

We extend the pathway-based multi-trait association tests of Kim et al.

(2016) to the case with only GWAS summary statistics. Given a pathwayS

with |S|genes, we partition the Z score matrix asZ = (Z′
(1)

, · · · ,Z′
(m)

)′

withZ(i) as the ith row vector (i.e. Z scores for the ith trait). Z(i) is further

partitioned at the gene level to Z(i) = (Z′
(i1)

,Z′
(i2)

, · · · ,Z′
(i|S|)

)′, and

at the SNP level to Z(ig) = (Z(ig)1, Z(ig)2, · · · , Z(ig)dg ) (for the dg
SNPs in gene g).

We define the gene- and pathway-based tests for a single trait and then

for multiple traits as

SPUs(γ1;Z(ig)) = ||Z(ig)||γ1
=





dg
∑

j=1

Zγ1

(ig)j
/dg





1/γ1

,

SPUsPath(γ1, γ2;Z(i), S) =





∑

g∈S

SPUs(γ1;Z(ig))
γ2/|S|





1/γ2

,

MTSPUsPath(γ1, γ2, γ3;Z, S) =
m
∑

i=1

SPUsPath(γ1, γ2;Z(i), S)
γ3 ,

where the three integersγ1 ≥ 1, γ2 ≥ 1 andγ3 ≥ 1 are used to adaptively

weight the SNPs, genes and traits respectively. For example, a larger γ1
(or γ2, or γ3) is more effective when there are a smaller number of truly

associated SNPs (or genes, or traits).

To adaptively choose (γ1, γ2, γ3), we propose a pathway-based

adaptive test as

MTaSPUsPath(Z, S) = min
γ1∈Γ1,γ2∈Γ2,γ3∈Γ3

p(γ1,γ2,γ3;Z,S),

where p(γ1,γ2,γ3;Z,S) is the p-value of MTSPUsPath(γ1, γ2, γ3;Z, S),

and by default we use Γ1 = {1, 2, 4, 8}, Γ2 = {1, 2, 4, 8} and Γ3 =

{1, 2, 4, 8}.

2.4 P-value calculations

Monte Carlo simulations are used to obtain the p-values for

MTaSPUsSet or MTaSPUsPath in a single layer of simulations. Briefly,

after estimating P and R, first we simulate null scores Z(b) ∼
MNm×d(0m×d,P,R) for b = 1, · · · , B. Then we use the null

scores to calculate the null test statistics, from which the p-values can

be calculated (Kwak and Pan 2016). A larger B is needed to estimate a

smaller p-value.

We generate a matrix normal variate Z(b) in the following way (Zhou

2014). We first generate ann×dmatrixLwith each element independently

from a standard univariate normal distribution with mean 0 and variance 1;

that is,. L ∼ MNm×d(0m×d, Im, Id). Then we obtain Z(b) = DLE′,

whereD andE are Cholesky decompositions ofP andRwithP = DD′

and R = EE′.

Specifically, for MTaSPUsSet,

• Step 1. Generate independent Z(b) ∼ MNm×d(0m×d,P,R) for

b = 1, · · · , B;

• Step 2. Calculate the null test statistics MTSPUsSet(γ1, γ2,Z(b));

• Step 3. The p-value for MTSPUsSet(γ1, γ2;Z) is

pγ1,γ2
= [

B
∑

b=1

I(|MTSPUsSet(γ1, γ2;Z
(b))| ≥ |MTSPUsSet(γ1,

γ2;Z)|) + 1]/(B + 1),

and that for MTSPUsSet(γ1, γ2;Z(b)) is

p
(b)
γ1,γ2

= [
∑

b1 6=b

I(|MTSPUsSet(γ1, γ2;Z
(b1))| ≥ |MTSPUsSet(γ1

, γ2;Z
(b))|) + 1]/B;

• Step 4. Calculate the null and observed test statistics

MTaSPUsSet(Z(b)) = min
γ1∈Γ1,γ2∈Γ2

p
(b)
γ1,γ2

,

MTaSPUsSet(Z) = min
γ1∈Γ1,γ2∈Γ2

pγ1,γ2
;
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• Step 5. Finally the p-value for the MTaSPUsSet test, pMTaSPUsSet, is

[
B
∑

b=1

I(MTaSPUsSet(Z(b)) ≤ MTaSPUsSet(Z)) + 1]/(B + 1).

A similar procedure is used to obtain the p-values for MTSPUsPath

and MTaSPUsPath. When only p-values for single SNP-single trait

associations, instead of Z statistics, are available as summary statistics,

we use |Z| = Φ−1(1 − P/2), where Φ is the cumulative distribution

function of the standard univariate normal distribution; we replace all Z’s

with |Z|’s to calculate the test statistics.

3 Results

3.1 Simulations 1: choice of the reference panel

To demonstrate the validity and performance of our proposed methods,

we designed a “control-control” experiment using the Welcome Trust Case

Control Consortium (WTCCC) GWAS genotypic data (Consortium 2007;

Kwak and Pan 2016). The WTCCC GWAS dataset contains about 3,000

controls with a total of 500,568 SNPs. Following the WTCCC’s quality

control (QC) recommendations, we removed subjects and SNPs that did

not pass the QC criteria, resulting in 469,612 SNPs in 2,938 control

subjects. We further removed SNPs with MAF<5% since we had only

379 samples in our reference panel to infer the LD structure for a set of

SNPs. We considered 4,572 unique genes in 186 KEGG pathways to check

type 1 error rates of all the tests. A total of 64,557 SNPs were mapped to

these genes.

We simulated multiple traits using a multivariate normal distribution

with mean 0 and correlation matrix in Equation (3) of Figure S1, which

was estimated based on the GIANT data for women. We generated a set

of six traits for each of the 2938 control subjects. Then we calculated

the univariate Z scores for all 64,557-6 SNP-trait pairs. A Monte Carlo

simulation size of B = 105 was used to calculate the p-values. The

results were based on 1000 simulation replicates.

For each gene (or pathway), R was estimated from the 1000 Genome

Project CEU samples. To estimate P, we excluded the SNPs with p-values

< 0.05 and used the remaining 48,669 SNPs. Equation (1) of Figure S1

is the estimate for P. This estimate is close to the true value shown in

Equation (3) of Figure S1, Pw . We pruned SNPs in high LD by removing

any SNP if it was correlated with another SNP with an absolute value of

Pearson’s correlation coefficient larger than 0.95 to avoid a nearly singular

matrix R causing numerical problems.

3.1.1 Gene-based tests

We first investigated the effects of the choice of the reference panel on

estimating LD among SNPs, i.e. R for each gene. We considered three

scenarios : 1) using the whole 2938 WTCCC controls as the reference

panel as an ideal case; 2) using only a random set of 100 WTCCC control

samples as the reference panel to see whether a sample size as low as 100,

close to that of many published reference panels, was sufficient to obtain

accurate estimates; 3) using the 1000 Genomes Project CEU samples with

379 individuals as the reference panel, a more realistic scenario without

individual level data.

Figure S2 shows the QQ plots of the p-values of the MTaSPUsSet test

based on each of the three ways to estimate the SNP correlation matrix. We

can see that all three plots looked reasonable with the estimated inflation

factorλ’s as 1.01, 0.99 and 0.99 respectively, all close to 1. It was confirmed

that the type I error rates seemed to be well controlled in all cases.

Next we further compared the results as shown in Figure 1. By

comparing the results between using the WTCCC whole control samples

and using only 100 samples as reference panel, we conclude that taking
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Fig. 1. Comparison of the (log-transformed) p-values of MTaSPUsSet using various

reference panels and that of the GEE-aSPUset test using individual-level data.

only 100 samples from the original whole dataset seemed to perform well;

the Pearson correlation (r) between the two was 0.99. The top right and

bottom left panels compare the results between using the WTCCC whole

data, WTCCC 100 samples and 1000 Genome Project CEU samples as the

reference panel; again they showed high degrees of mutual agreement with

a Pearson correlation coefficient as high as 0.97 and 0.98 respectively. In

the bottom right panel, we further compared the results of MTaSPUsSet

with only summary statistics (using the 1000 Genome Project CEU

samples as the reference panel) to a similar GEE-based adaptive test

with individual-level data (Kim et al. 2016). Although the agreement was

reasonably high with a Pearson correlation coefficient of 0.9, there were

some differences, indicating that cautions are needed when using summary

statistics.

We also tried metaCCA (Cichonska et al. 2016) and TSco on the

simulated data, and found that both might not work well when the

sample size of the reference panel was small. We used 1) the whole

2938 WTCCC controls as an ideal case; 2) 100-2000 samples from the

WTCCC control data; 3) using the 1000 Genome Project CEU samples,

respectively, as the reference panel. We used “metaCcaGp” function

in the R version of metaCCA at: https://bioconductor.org/

packages/devel/bioc/html/metaCCA.html. Figures S3 and

S4 show the QQ plots for each scenario. In particular, it showed that even

a sample size of 500 drawn from the WTCCC control data or of 379 for the

1000 Genome Project CEU samples might not be large enough; because

of this reason, we would not apply the tests to the real data.

Importantly, it was confirmed that metaCCA and TSco gave almost the

same p-values, as shown in Figure S5

3.1.2 Pathway-based tests

For evaluations, we designed a control-control experiment using the

WTCCC CD data. We randomly chose 3 to 15 genes from the WTCCC

data to form a pathway. We applied the MTaSPUsPath test to each of 319

pathways. Simulations were conducted with different reference panels

used to estimate R, similar to what was done for gene-based testing.

Figure S6 compares the results of MTaSPUsPath with various reference

panels, and of a similar pathway-based adaptive test called GEE-aSPUpath
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based on individual-level data (Kim et al. 2016). Similar conclusions to

those for the gene-based MTaSPUsSet test can be drawn.

3.2 Simulations 2: power

The second simulation study was designed to compare the power of

MTaSPUsSet with that based on single SNP-multiple trait and multiple

SNP-single trait methods under realistic scenarios. To mimic real data, the

genotype data, Gn×d, were taken from the 1000 Genome Project CEU

samples for three representative genes: TMEM110, ATP2A1 and RPS10-

NUDT3 with their true effect sizes as the three Z score matrices, Z; Let

Z1, Z2 and Z3, for the three genes in the GIANT data, representing

various association patterns (Figures 2 and S15). The covariance structure

among the multiple traits, V, was the correlation matrix in Equation (3)

of Figure S1 for women in the GIANT data. We simulated the traits for

each gene as

yi ∼ MN(aZlgi,V), l = 1, 2, 3,

where a was a constant to be varied to control the effect size, and gi was

the genotype data for subjecy i (i.e. ith row vector of Gn×d) for i =

1, 2, ..., 379. The numbers of the SNPs were 8, 6 and 19 for TMEM110,

ATP2A1 and RPS10-NUDT3 respectively.

To compared our multiple SNP-multiple trait method with single

SNP-multiple trait and multiple SNP-single trait methods, we applied a

gene-based aSPUs test (Kwak and Pan, 2016, multiple SNP-single trait

method) for each trait, then combined the results across the multiple

traits with a significance threshold of 0.05/6 = 0.0083 based on the

Bonferroni correction; we also considered two single SNP-multiple trait

association tests proposed by Zhu et al. (2015) (Shet) and Kim et al. (2015)

(MTaSPUs). The two tests were applied to each SNP and then we used

a significance threshold of 0.05/d based on the Bonferroni correction,

where d is the number of the SNPs in a gene.

Figure S16 shows empirical type I error rates and power curves based

on 1000 replicates in each case. For genes TMEM110 and ATP2A1,

there were large association signals for single trait height and one SNP

(SNP 6) respectively, several other methods also performed as well

as MTaSPUsSet; however, for gene RPS10-NUDT3, there were only

weak and multiple association across multiple SNPs and multiple traits,

MTaSPUsSet was the clear winner with the highest power. In summary,

due to its adaptive combination of information across SNPs and traits,

our proposed MTaSPUsSet test could maintain high power across all the

scenarios.

3.3 Analysis of the GIANT data

We applied the MTaSPUsSet test to the summary statistics for

sex stratified anthropometrics data from The Genetic Investigation of

ANthropometric Traits (GIANT) consortium (Randall et al. 2013). The

data contain the p-values of univariate testing on single SNP-single trait

associations on 2.7 million SNPs with each of six anthropometric traits that

are well established to represent the body size and shape: height, weight,

BMI, waist circumference (WC), hip circumference (HIP), and waist-hip

circumference ratio (WHR).

The original study was based on a single SNP–single trait association

analysis (Randall et al. 2013). Instead, we applied gene-based and other

association tests on the six traits (height, weight, BMI, WC, HIP and WHR)

for men and for women separately. Since all study participants were of

European ancestry, we used the 1000 Genome Project CEU samples as the

reference panel for both methods.

First, for MTaSPUsSet, in total 2,722,976 SNPs were mapped to

17,562 genes (plus 2-kb upstream and 2-kb downstream regions for each

gene). We set the genome-wide significance threshold at 0.05/17562 =

2.85 × 10−6 based on the Bonferroni correction. We pruned SNPs in

high LD by removing any SNP if it was correlated with another SNP with

an absolute value of Pearson’s correlation coefficient larger than 0.95. For

each gene, the correlations among the SNPs, R, were estimated from

the 1000 Genome Project CEU samples. The correlations among the six

traits were estimated based on 1,454,615 null SNPs with non-significant

Z scores for men and women respectively as shown in Figure S1.

A stage-wise simulation strategy was used to calculate the p-values

for each gene. We started with the simulation number B = 104; we

sequentially increased B to 105, then 106 and finally 107 if a gene’s

p-value was less than 0.003, 0.0003 and 0.00003 respectively.

The MTaSPUsSet test identified a total of 137 genes to be genome-

wide significant for men or women: 81 for men, 125 for women and 69

for both.

3.3.1 Comparison with single SNP-single trait analysis

As a comparison, for single SNP–single trait analysis, we used a

genome-wide significance threshold of 5×10−8/6 based on a Bonferroni

adjustment for six traits, yielding in total 1298 significant SNPs (with 623

SNPs mapped to 62 genes) for men, and 2072 significant SNPs (with

990 SNPs mapped to 97 genes) for women. Although there were many

common genes (i.e. 53 and 85 for men and women) identified by both

methods, the proposed MTaSPUsSet test identified more genes (Table S1).

In particular, to demonstrate the sex differences of genetic effects, the new

test pinpointed 12 and 56 significant genes uniquely and specifically for

men and women respectively; in contrast, the popular and standard single

SNP–single trait analysis identified 20 and 55 genes uniquely for men and

women respectively. The smaller number of men-specific genes identified

by the new test could be due to its higher power: it is reasonable to assume

that some of the identified sex-specific genes are false positives due to

inadequate power for either sex, though further validations are needed.

3.3.2 Comparison with single SNP-multiple trait analysis

We applied two other single SNP-multiple trait association tests

proposed by Zhu et al. (2015) (Shet) and Kim et al. (2015) (MTaSPUs) to

compare with MTaSPUsSet, a multiple SNP-multiple trait testing method.

The usual genome-wide significance threshold of5×10−8 was used in

analysis. Shet identified 2038 significant SNPs (with 1073 SNPs mapped

to 137 genes) for men, and 2700 SNPs (with 1265 SNPs mapped to

133 genes) for women. MTaSPUs detected 2205 SNPs (with 1198 SNPs

mapped to 153 genes) for men, and 2708 SNPs (with 1342 SNPs mapped

to 143 genes) for women.

For a comparison, we focused on the genes that MTaSPUsSet uniquely

and specifically detected for men and women: 4 genes for men and 18 genes

for women. Figures S10 and S11 show the log-transformed p-values of

univariate testing on single SNP-single trait associations for these genes.

We can see that multiple SNPs were associated with one or more traits,

for which MTaSPUsSet gained power by aggregating association signals

across multiple SNPs while a single SNP-multiple trait test was unable to

do so; see genes TMEM110 and VTA1 in Figure 2 as examples (also shown

in Figures S10 and S11 respectively).

3.3.3 Comparison with gene-based multiple SNPs-single trait analysis

Next, we conducted a multiple SNP-single trait analysis. We applied a

gene-based aSPUs test (Kwak and Pan, 2016) for each trait, then combining

the results across the multiple traits with a genome-wide significance

threshold of 0.05/(17562 ∗ 6) = 4.75× 10−7 based on the Bonferroni

correction. The aSPUs test identified 81 significant genes for men and 111

genes for women (with 54 genes common for both sexes).

Again we focused on the genes uniquely and specifically identified

by MTaSPUsSet for men and women respectively: 9 and 17 genes

respectively. Figure S12 and S13 shows the log-transformed p-values of

 at U
niversity of M

innesota - T
w

in C
ities on Septem

ber 14, 2016
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

http://bioinformatics.oxfordjournals.org/


6

TMEM110

SNPs

BMI

Height

HIP

WC

Weight

WHR

0

2

4

6

8

10

12
−log10P

VTA1

SNPs

BMI

Height

HIP

WC

Weight

WHR

0

2

4

6

8

10

12
−log10P

ATP2A1

SNPs

BMI

Height

HIP

WC

Weight

WHR

0

2

4

6

8

10

12
−log10P

RFWD2

SNPs

BMI

Height

HIP

WC

Weight

WHR

0

2

4

6

8

10

12
−log10P

Fig. 2. Log-transformed p-values of univariate SNP-trait associations for some genes. TMEM110 and VTA1 (left two) uniquely detected using MTaSPUsSet compared to other single SNP -

multiple traits approaches (MTaSPUs and Shet). ATP2A1 and RFWD2 (right two) uniquely detected using MTaSPUsSet compared to other multiple SNPs - single trait approach (aSPUs).

P-value less than genome-wide significance threshold of 5 × 10−8 colored in blue.

univariate testing on single SNP-single trait associations for these genes.

This time we can see some strong association signals across multiple traits

for some single SNPs, in which case MTaSPUsSet could detect an overall

association by aggregating information across the multiple traits, while

multiple SNP-single trait tests might fail. As examples see genes ATP2A1

and RFWD2 in Figure 2 (as also shown in Figures S12 and Figure S13).

3.3.4 Comparison with another gene-based multiple trait test

We applied MGAS of Sluis et al. (2015) using “kgg” software. The

same 2-kb upstream and 2-kb downstream regions were used in mapping

the SNPs to each gene, and the same estimated trait correlation matrices

were used. However, for unknown reasons, only in total 969,832 SNPs

were mapped to 6,424 genes, compared to ours of mapping 2,722,976 SNPs

to 17,562 genes. Accordingly, the genome-wide significance threshold was

set at 0.05/6424 = 7.78× 10−6 based on the Bonferroni correction. In

total only 19 genes were identified by MGAS to be significant: 16 genes

for women and 8 for men.

For a fair comparison between MTaSPUsSet and MGAS, we examined

more closely the 17,562 and 6,424 mapped genes for each method. There

were 5197 shared genes commonly mapped by both methods; many of

the 6,424 “kgg” genes starting with “LOC” and “LINC” were not in the

MTaSPUsSet set of the 17,562 genes. We decided to apply both methods

to the common set of the 5197 genes. The genome-wide significance level

was set at 0.05/5197 by the Bonferroni adjustment.

Figure 3 shows the Manhattan plots for men and women based on

MGAS and MTaSPUsSet respectively. Although there were some shared

and general patterns between the results of the two methods, MTaSPUsSet

identified a larger number of significant genes: a total of 49 genes with 27

and 39 for men and women respectively. In contrast, MGAS identified only

a total of 17 genes with 7 and 14 for men and women respectively. It might

suggest that MTaSPUsSet was more powerful, though further validations

are needed.

To further contrast the differences between the two tests, Table S2 lists

the 17 significant genes identified by MGAS with the corresponding p-

values from the two tests. Genes LCORL, VTA1, BICD2, RASA2, GNA12,

NCOA1, TNS1, CEP112, DNM3 and RFWD2 were significant for women

by both MGAS and MTaSPUsSet, and LCORL, RASA2 and NDUFS3 were

significant for men by both tests, while LCORL and RASA2 were significant

for both men and women by both tests. Gene LCORL was known to be

associated with anthropometric traits, including body height in African

Americans (Carty et al. 2012), birth weight and adult height (Horikoshi et

al. 2013); it is also a candidate gene for body weight in sheep (Al-Mamun

et al. 2015) and body size in horse (Metzger et al. 2013).

Figure 4 shows the p-values of the univariate test on single trait-single

SNP associations for some genes identified by MTaSPUsSet, along with

the (γ1, γ2) values for the most significant MTSPUsSet(γ1, γ2) test (i.e.

with the smallest p-value) for each gene. Note that, due to the use of a

finite number of Monte Carlo simulations, multiple sets of (γ1, γ2) values

might give equal (and smallest) p-values.

It can be seen that for genes RPGRIP1L and RPS10-NUDT3, since

there were many moderately significant univariate p-values (for univariate

trait-SNP associations) with a dense association pattern, small values

(γ1, γ2) = (1, 2) or (2, 1) gave the most significant results. In contrast,

for gene DNM3 with a larger number of SNPs, the association pattern was

more sparse with main associations between some SNPs and trait height,

larger values of (γ1, γ2) = (4, 8) or (8, 8) gave the most significant

result. On the other hand, for gene ZCCHC2, due to the two or three

highly significant univariate p-values between one or two SNPs and two

traits, weight and BMI, any value of (γ1, γ2) would detect the overall

association.

4 Discussion

We have presented new gene- and pathway-based adaptive association

tests for multiple traits using only GWAS summary statistics. Our control-

control experiments using the WTCCC genotype data with simulated

multiple traits demonstrated that the type I error rates were well controlled.

For the estimation of LD among SNPs (i.e. correlation matrix R), the

choice of a reference panel (with individual-level genotypic data) would

be a key for the performance. In the WTCCC control-control experiments,

we compared three reference panels based on either the whole or a small

subset of the original WTCCC control data, and the 1000 Genome Project

CEU samples (with 379 subjects). The p-values calculated from the

three reference panels were in general similar, but not exactly the same;

the Pearson correlation coefficient of the log(p-values) between any two

reference panels was at least 0.97, confirming that either the 1000 Genome

Project CEU samples or a small subset of the control samples from the

original population were sufficient for the WTCCC subject population.

We applied our gene-based MTaSPUsSet test to the meta-analyzed

GIANT data. Since the participants in the GIANT data were of European

and European American descent, the use of the 1000 Genome Project CEU

panel was expected to be reasonable. The MTaSPUsSet test identified a

total of 137 significant genes: 81 for men, 125 for women and 69 for both.

As a comparison, for single SNP–single trait analysis identified 117 genes:

62 for men, 97 for women and 42 for both. MTaSPUsSet identified more

genes. For more comparison, we also applied MGAS (Sluis et al. 2015)

using the same reference panel, identifying only 19 significant genes using
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Fig. 3. Manhattan plots for the GIANT data using MGAS and MTaSPUsSet on 5197 genes for men and women respectively.
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Fig. 4. Log-transformed p-values of univariate SNP-trait associations for some genes identified by MTaSPUsSet. The most significant MTSPUsSet(γ1, γ2) test with the corresponding

(γ1, γ2) values were (2, 1) for gene RPGRIP1L, (1, 2) for RPS10-NUDT3, (4, 8) or (8, 8) for DNM3 and any value for ZCCHC2. P-value less than genome-wide significance threshold

of 5 × 10−8 colored in blue.

“kgg” software with a smaller set of the genes being mapped. For a fair

comparison, we applied both MTaSPUsSet and MGAS to a common set of

5197 genes. MTaSPUsSet identified 27 and 39 significant genes for men

and women respectively, compared to only 7 and 14 genes by MGAS,

suggesting possible power gains by MTaSPUsSet. We also note that the

other method metaCCA could not be applied to the GIANT data because

it required a common sample size for all SNP-trait pairs, while the sample

size for some SNPs ranged from around 200 to about 70, 000 across the

traits.
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