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ABSTRACT
Voice assistants are quickly being upgraded to support ad-
vanced, security-critical commands such as unlocking de-
vices, checking emails, and making payments. In this paper,
we explore the feasibility of using users’ text-converted voice
command utterances as classification features to help identify
users’ genuine commands, and detect suspicious commands.
To maintain high detection accuracy, our approach starts
with a globally trained attack detection model (immediately
available for new users), and gradually switches to a user-
specific model tailored to the utterance patterns of a target
user. To evaluate accuracy, we used a real-world voice assis-
tant dataset consisting of about 34.6 million voice commands
collected from 2.6 million users. Our evaluation results show
that this approach is capable of achieving about 3.4% equal
error rate (EER), detecting 95.7% of attacks when an opti-
mal threshold value is used. As for those who frequently
use security-critical (attack-like) commands, we still achieve
EER below 5%.

CCS CONCEPTS
• Security and privacy→ Usability in security and pri-
vacy; Intrusion/anomaly detection and malware miti-
gation.
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1 INTRODUCTION
Voice assistant vendors (e.g., Apple’s Siri, Amazon’s Alexa,
and Samsung’s Bixby) have started to upgrade their solu-
tions to support more advanced and useful commands – ex-
amples include sending messages, checking emails, making
payments, and performing banking transactions – some of
which may also have security and privacy implications. Such
advanced commands make voice assistants an attractive tar-
get for attackers to exploit, and try to steal users’ private
information or perform unauthorized banking transactions.

To mitigate those threats, some voice assistants force users
to first unlock their devices (e.g., using patterns or finger-
prints) before submitting security-sensitive commands. How-
ever, this mandatory device unlock requirement sits uneasily
with usability of voice assistants as users have to physically
engage with their devices at least once in order to use voice
assistants. Further, some devices like smart speakers do not
have any physical input space for users to authenticate them-
selves.

As a more usable authentication method, voice biometric-
based authentication methods have been proposed to implic-
itly check users’ voices using trained (known) voice biomet-
ric features. Hence, users do not have to physically authenti-
cate themselves. However, voice biometric based authentica-
tion methods achieve about 80–90% accuracy when there are
background noises present [3, 17, 29, 31, 33, 37], and are often
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used with threshold values that reduce false rejection rates –
compromising security as a result. Human mimicry attacks
can be effective against them [14, 19, 26]. Such methods are
also weak against voice synthesis attacks where attackers
use deep learning techniques to train victims’ voice biomet-
ric models using recorded voice samples, and generate new
malicious voice commands [11]. To detect those voice pre-
sentation attacks, signal-processing based voice liveness de-
tection solutions have been discussed recently [18]; but such
solutions would also suffer from accuracy losses when there
are environmental changes, and cannot guarantee detection
performance against unseen conditions.
In this paper, we propose a novel way to identify users’

genuine commands and detect suspicious commands based
on “Text-conVerted VoICE command analysis” (Twice), and
evaluate its feasibility using a large real-world voice assis-
tant dataset collected over a two month period through a
large IT company – comprising of about 34.6 million voice
commands. We used text-converted voice command utter-
ances (bag of words) and matched applications as the main
classification features. We experimented with lightweight
classification algorithms, and measured the average equal
error rates (EER), detection time, and training time. To the
best of our knowledge, we are the first group to consider
analyzing voice command text utterances to detect voice
presentation attacks.

Our key contributions are summarized below:

• Real-world voice assistant command analyses, show-
ing that about 87.48% of the users are occasional users
using less than 20 commands over a month.
• Voice presentation attack detection system design that
initially works with a globally trained model (avail-
able immediately), and gradually switches to a more
accurate user-tailored model with increase in the use
of voice assistants.
• Evaluation of the feasibility of using text-converted ut-
terances as features to detect anomalous use of security-
critical commands, showing that the average EER is
about 3.4%, and the detection accuracy measured with
a month-period unseen data is 95.7%.
• Identification of security-critical voice commands that
are being used on real-world voice assistants, includ-
ing commands that can be used to access credit card
information, and change security settings.

2 BACKGROUND AND THREAT MODEL
In this section we describe existing (commercialized) voice
authentication solutions, and attack scenarios that can cir-
cumvent them. In doing so, we motivate the need for our
text utterance analysis based attack detection solution.

Voice Assistant Authentication
The most widely adopted solution is voice biometric based
authentication that uses rawwaveforms, complex spectra fea-
tures, and log-mel features to train and classify users [9, 21].
It does not require users to perform additional tasks or re-
member additional information to authenticate themselves.
It is a continuous solution that can be used to verify users’
every command. Google Assistant and Samsung Bixby are
equipped with voice biometric based authentication solu-
tions. However, existing algorithms [3, 17, 24, 37] achieve
about 80–90% accuracy when there are ambient background
noises. Hence, to maintain voice assistant usability, those so-
lutions are used with threshold values that result in low false
rejection rates with some compromises in false acceptance
rates. This use of threshold values open doors for human
mimicry attacks – where attackers use their own voices and
try to mimic device owners’ voices – to bypass authentica-
tion checks [19, 26]. Voice replay attacks (replaying device
owners’ recorded voices through a speaker) [8, 18, 32, 36]
and voice synthesis attacks (new voice commands are gener-
ated using device owners’ voice samples and trained models,
and played through a speaker) [25, 27, 35] are also effective
against voice biometric based authentication solutions.
Voice passwords are available on Samsung Bixby. Users

are asked to choose and remember a secret word, and say
it to authenticate themselves upon submitting sensitive or
security-critical commands. If voice passwords are used in
public places, however, people can easily hear and compro-
mise users’ secret words. An adversary could simply record
users’ voice passwords and replay them to bypass it. There
are usability issues too, since users may be interrupted fre-
quently to say their secret words.

Existing voice assistants often require users to unlock their
mobile devices first (e.g., by entering their PINs or patterns)
before processing and executing sensitive and privileged
voice commands. To use Bixby on Galaxy phones, for exam-
ple, most of the useful commands (e.g., calling someone or
setting alarms) are currently restricted, requiring users to
first unlock their devices – such security policy sits uneasily
with future visions of how voice assistants should work and
their usability benefits. In this paper, we assume that future
mobile devices will be equipped with a voice biometric based
authentication scheme, and allow users to seamlessly use
voice assistants without having to physically touch their
devices.
Our speech-to-text-converted utterance analysis based

attack detection system, referred to as “Twice,” will be more
effective against voice synthesis attacks as it does not rely
on voice biometric features. Voice password threats are not
applicable since Twice is an implicit attack detection system.
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Threat Model and Assumptions
The first attack scenario involves a piece of malware being
installed on the victim’s smart TV or PC at home, and sub-
sequently exploiting a nearby smart speaker (e.g., Amazon
Echo). Here, we assume that voice biometric authentication
has not been activated on the smart speaker, or even if it
is turned on, it is configured to minimize false rejection
rates [3, 24], and would inevitably falsely accept some attack
commands [1, 5]. This malware monitors background noise
levels, and when it senses that there is no one at home, it
plays a set of pre-recorded malicious voice commands to
activate the smart speaker, and make purchases and request
for money transfers (e.g., through applications like Venmo).
The second threat we consider in the same context is a

hidden voice command attack [6, 7] that hardly alters the
original sound (e.g., music) but still adds hidden malicious
commands – such commands can be interpreted and exe-
cuted by target devices. An attacker hides attack commands
inside popular music files using the distortion techniques
presented in [7], and uploads those malicious music files on
an online streaming service such as Youtube. A victim, at
home, plays those files through Youtube and listens to music.
Those hidden malicious commands, inaudible to human ears,
would be understood and executed by the smart speaker.

The third threat model we consider is a voice synthesis
attack [16, 25, 27]. We assume that (1) voice biometric au-
thentication system is activated on the victim’s phone – this
victim can use all voice assistant features on the phone with-
out first unlocking the device, (2) an attacker knows the
victim, and (3) the attacker has silently recorded sufficient
length of the victim’s voice samples. The attacker uses ex-
isting, easily accessible voice training tools like Google’s
Tacotron [30, 34] or Baidu’s DeepVoice [2, 28], trains the
victim’s voice biometric models, and generates a series of
new, malicious voice commands using that model.
The victim, while being acquainted with the attacker,

leaves her phone unattended (but locked) on the table and
goes to the toilet for a few minutes. The attacker exploits
that moment to start playing the prepared attack voice script
using the attacker’s phone speaker to steal the victim’s credit
card information or request money transfers. Using this syn-
thesis attack, the attacker has managed to execute severe
commands in a very short period of time without having
to brute-force the victim’s screen lock pattern or PIN. We
motivate the need for Twice based on those attacks, and
demonstrate that Twice can be an effective complementary
solution to make such attacks muchmore difficult to perform.

Latency and Resource Usage Requirements
Our conversations with several engineers at a large IT com-
pany revealed that there are latency and computational power

usage requirements that must be considered upon deploying
a machine learning-based service on voice assistant servers.
This is because additional use of computational power and
memory through continuous invocation of machine learn-
ing algorithms may incur unacceptable costs for businesses,
and unwanted latency for processing voice commands. A
single GPU may be expected to concurrently process 100 or
more voice sessions (streaming commands), indicating that
machine learning algorithms must be light, simple, and fast.

3 REAL-WORLD VOICE ASSISTANT COMMAND
ANALYSIS

In this section, we describe the real-world dataset that was
used to evaluate the Twice feasibility.We summarize key data
characteristics that motivate the selection of classification
features, and explain how the attack set was generated.

Dataset Description
The real-world dataset we used consists of English voice
commands that were processed and logged by a large IT
company’s voice assistant service in November and Decem-
ber 2017, logging every English command submitted (and
processed) from about 3 million users located in the United
States. There are about 48 million voice commands in total,
all submitted through the users’ smartphones.
Each voice command data entry (record) consists of the

following 6 attributes:
• Device ID: A unique ID associated with a smartphone
used to submit a voice command;
• Utterance: Submitted voice command in textual (speech-
to-text converted) format;
• Time stamp: Time of voice command received as recorded
by the voice assistant server;
• Command type: Command type (e.g., open application
or set alarm) categorized by the voice assistant after
processing a voice command;
• Matched application: Target application that will be
responsible for executing a response generated and
returned after processing a voice command;
• Processed state: Boolean value indicating whether a
submitted command was correctly interpreted and pro-
cessed, and a response has been generated.

Device ID was used to select and group all commands
belonging to the same user. Here, our assumption is that a
smartphone (and the voice assistant application running on
it) was used by a single user.

Data Pre-processing
First, we looked for noise in the dataset and removed (1)
data entries that have no utterance information, and (2) data
entries for which the processed state is “false” since such
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entries are not really supported by the voice assistant and
are unlikely to be used again by users. After pre-processing,
we were left with about 34.6 million voice commands from
2.6 million users. For the real-world voice command analysis
(presented in this section), we only used the November 2017
dataset, consisting of about 17 million commands from 1.7
million users. The December dataset, consisting of about 17
million commands from 1.9 milliion users, was used as an
unseen test set for accuracy evaluation.

Data Exploration
Voice Command Usage Frequencies. We counted the number
of voice commands used by each user (grouped using Device
ID), and ordered the users by the number of commands used
in a decreasing order. Only 0.04% of the users (661) used
500 or more voice commands, 12.48% of the users (216,303)
used between 20 to 499 voice commands, and 87.48% of the
users (1,516,189) used less than 20 commands in a month.
On average, about 50% of the users used four or less com-
mands per month, indicating that most voice assistant users
are occasional users, and voice assistants still seem to have
limited impact in our lives. But we note that our analyses
are based on just one voice assistant implementation, and
any generalization of our results need to be performed with
caution.

Popular Command Types. Table 1 shows the top 10 popularly
used voice command types for occasional users who used
less than 20 commands in a month, and for frequent users
who used 500 or more commands. Among the occasional
user group (87.48% of the users), the most popularly used
command typewas “Open [app-name]” (10.4%), which allows
users to conveniently open an application without having
to search and use touch screens. The second popularly used
command typewas “Call [person]” (9.0%), which allows users
to quickly make phone calls without having to open and
search contacts. “Set alarm” and “Take screen shot” were
also popularly used.

Table 1: Top 10 voice command types used for occasional
users and frequent users.

< 20 commands ≥ 500 commands
Type Percent Type Percent
Open [app-name] 10.4% Open [app-name] 36.3%
Call [person] 9.0% Close [app-name] 4.4%
Set alarm 5.9% Close all apps 4.2%
Answer question 4.3% Call [person] 3.2%
Take screen shot 3.9% Go back 2.5%
Remind me [time] 3.1% Answer question 2.4%
Turn on flash light 3.1% Home screen 2.1%
Where is [location] 2.8% Open message 2.0%
Turn off flash light 2.6% Take screen shot 1.8%
Take a picture 1.7% Search [keyword] 1.3%

We observed a slightly different trend for the more fre-
quent users who used 500 or more commands. “Open [app-
name]” was more dominantly used (36.3%), and commands
for closing applications “Close [app-name]” (4.4%) and “Close
all apps” (4.2%) were also popularly used. “Open message”
(2.0%) and “Search [keyword]” (1.3%) were also popularly
used among frequent users.

Popular Matched Applications. Next, we analyzed popularly
used matched applications. The most frequently matched
application (for executing voice assistant response) was “Ac-
tion controller”1 (28.97%) followed by “Contacts” (15.60%),
“Clock” (9.91%) and “Messages” (5.25%).

To explore the possibility of using matched applications as
classification features, we analyzed the most popularly used
application combinations and their proportions for users
who used 20 or more commands in a month. As shown in
Table 2, the proportion of the most popularly used combi-
nations (among all combinations detected) used were just
1.07% – there was no dramatic decrease in the proportions,
indicating that the proportions are not significantly skewed
toward small number of application combinations, and some-
what evenly distributed. Such characteristics would make
applications another possible classification feature.

Table 2: Top 5 combinations of matched applications used
by those who used 20 or more commands.

Matched application combinations Percent
Action controller, Contacts 1.07%
Action controller, Contacts, Clock 1.05%
Action controller, Contacts, Clock, Settings 1.04%
Action controller, Contacts, Messages 0.83%
Action controller 0.81%

Attack Set Generation
To generate a global attack set to be used for attack detection
model generation and accuracy evaluation, we first selected
a set of security and privacy risks (related to smartphone
privileges) from [12], which is a survey literature on smart-
phone users’ concerns. There were 99 risks in total, including
risks like “read your credit card in your wallet,” “change your
keylock/pattern/PIN,” “posted to your Facebook wall,” and
“took a photo with your front-facing camera.” We then iden-
tified keywords associated with each risk. For each keyword,
we searched for synonyms, and tested them on the target
voice assistant as a full command before including them; e.g.,
for the post-on-Facebook risk, we used the following search
query: “[post OR update OR add OR share OR upload OR write
OR compose OR print OR sign OR type OR note] AND facebook.”
1Phone level control commands such as “Home screen,”, “Open/Close [app-
name],” “Scroll down,” and “Go back”
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We then searched for voice commands that match those key-
words, using AND and OR conditions appropriately as shown
above. We did not consider keyword sequences, and only
considered full word matches. We removed all duplicates,
and commands that would not lead to a particular threat (e.g.,
search commands that contain selected keywords), leaving
us with a final set of 262,887 security-critical commands.
The largest risk category (counting attack commands)

was “Set alarms” with 182,612 commands, the second largest
was “Take screenshots” with 34,818 commands, followed by
“Force quit all apps,” and “Download data,” and “Connect to
a Bluetooth device” with 10,324, 7,972, and 5,665 commands,
respectively. We show 5 example risk categories with high
user concern levels (high severity) in Table 3, and three most
popularly used commands for each category – we counted all
command occurrences in November without removing du-
plicates. “Change voice password” was the most frequently
used command from the “Change keylock/PIN/pattern” cat-
egory, being used 1,686 times. From the “Read your credit
card” category “Open credit card” and “Open Samsung Pay
and show me the registered credit card” were popularly used.
As for the “Mobile pay” category, “Open Samsung Pay” was
the most popularly used command. Commands like “Pay
with Bank of America card using iris” that would lead to
actual payment transactions were also used by many users.
From the “Post on Facebook” category, “Open Facebook and
post a recent picture” was popularly used – this command
could be used with the “Take a picture with the front cam-
era” command (“Take a picture” category) to post a private
photo of a user on Facebook. Status update commands like
“Update my Facebook status to say Where is the weed and
send it” were also popularly used. These real-world use of
security-critical commands reinforce our motivations to im-
prove voice assistant security, and demonstrate that attack
scenarios described in Section “Threat Model and Assump-
tions” can be performed.

We do not claim that our attack set represents all possible
attacks and risks associated with using smartphones or voice
assistants (that is not the goal of our work); however, it
does cover a sufficiently comprehensive set of attacks that
users are concerned about, providing us with effectively large
dataset (comprising of real-world, working commands) for
evaluating the feasibility of our attack detection models.

Security-critical Command Definitions
A “security-critical command” is a command that could be
used in a voice presentation attack to exploit one of the
security threats mentioned in [12]. Our attack set (above)
comprises of such security-critical commands selected from
an existing set of real-world commands that are actually un-
derstood by the voice assistant. Here, our assumption is that

Table 3: Attack dataset comprising of 99 selected security
risk categories. We selectively show 5 high-severity risk cat-
egories and top three most popularly used commands.

Count
Category 1: Change keylock/PIN/pattern 5,201
Change voice password 1,686
Change password 441
Change unlock password 15

Category 2: Take a picture with front-facing camera 483
Take a picture with the front camera 118
Open front camera and take picture 45
Can you take a picture from the front camera 3

Category 3: Mobile pay 25,614
Open Samsung pay 14,259
Open Pay pal 1297
Open Venmo 497

Category 4: Read your credit card 962
Open credit card 56
Open Samsung pay and show me the registered credit card 13
Open Debit card 11

Category 5: Post on Facebook 3,646
Open Facebook and post a recent picture 97
Make a post on Facebook 58
Open Facebook and show post 35

all commands included in the attack set represent security-
critical commands that are used by adversaries to achieve
goals (lead to risks) mentioned in [12]. Our definition of an
attack is an anomalous use of a security-critical command,
and this is what Twice is trained to detect. By including the
commands that were uttered by users in the attack set we
also consider voice replay attacks (replaying victim’s own
utterances on victims’ devices).

Security-critical Command Usage Frequencies
Across all 1.7 million users, there were 415,831 users (23.99%)
who have used at least one of the security-critical commands
included in the November attack set (previous section). It
is interesting to note that a noticeable proportion of cur-
rent users submit commands that have potential security or
privacy risks.
To study the proportions of security-critical commands

being used, we selected users who have used at least one
security-critical command and at least 20 commands in No-
vember, and computed the proportions (# security-critical
commands / # all commands). There were just 29,979 users
(1.73%) who fall under that category. 16,377 of such users
(54.63%) used small proportions (0–10%) of security-critical
commands. And 7,985 users (26.64%) were using noticeable
proportions (more than 20%).
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User Consents for Data Collection
We clarify that all the data we used for analyses were col-
lected only with explicit consents from voice assistant users,
acknowledging that their voice assistant interaction data
and application usage data will be collected and may be used
for data analytics and research purposes. We inquired and
checked with a user privacy protection executive office, and
received their confirmation that there are no legal and ethical
issues in utilizing the collected data for research purposes
so long as we do not present user identifiable information.
We confirm that only the aggregated statistical results are
presented in this paper, and it is not possible to identify users
based on our results.

4 DESIGN
In this section we provide an overview of how Twice works,
including the classification features and algorithms used.

System Overview
Twice is an AI-driven attack detection system that is inte-
grated with existing voice assistant servers, utilizing their
speech recognition and command processing services. Twice
components are added to an existing voice assistant server
architecture.

When a user says a command to a voice assistant applica-
tion activated on her device, the voice assistant forwards that
command and the device ID to the remote server through a
secure channel. The voice assistant server uses the speech
recognition service to generate a corresponding utterance,
and feeds the text to the command processing engine, which
in turn, adds the rest of the features described in Section
“Dataset Description.” It then processes the command, and
generates a response to be sent back to the requesting device.

While it generates a response, it also sends the device ID
and command text and extracted features to the Twice en-
gine. The pre-trained attack detection classification model
is selected based on the device ID – here, we assume one
device is associated with one user (device owner). Based on
the number of commands used cumulatively, the Twice en-
gine chooses a more accurate classification (attack detection)
model to use: the “global model” – trained with globally
used commands – is used by default for new users; the “user-
tailored model” – trained with users’ own commands – is
selected when the user has used sufficiently large number
of commands (e.g., more than 500 commands), and the user-
tailored model more accurately detects attacks. The selected
model is used to compute the probability of the command
being an attack. The Twice engine returns this attack proba-
bility result (e.g., 95% chance that the command is an attack,
and has not originated from the user) to the command pro-
cessing engine, which in turn, sends back the generated voice

assistant response and attack probability result to the voice
assistant application running on the user’s device.
The voice assistant application compares the returned

attack probability against a pre-configured authentication
threshold value that is set based on the user’s preferred voice
assistant security level. If the attack probability value is equal
or greater than the threshold value, the returned response is
initially rejected. The user is then asked to explicitly enter
her PIN to continue running the flagged, security-critical
command. If the user enters the correct PIN, then the flagged
command is marked as a genuine command, and is used to
updated the user-tailored model.

Attack Detection Models
Feature Selection. Based on the data characteristics analyzed
in Section “Data Exploration,” we select the following fea-
tures to be used in our classification models:
• Bag of words (BoW) for users’ commands and security-
critical (attack-like) commands [23]: Count of each
word used in a set of voice commands previously used
by a target user (user-tailored model), a global group
of users (global model), and a global set of security-
critical commands (attack set).
• Matched application: target applications are converted
as “one hot encoding” features [15].

Binary Classification. We use a binary classification model to
differentiate users own genuine commands from attack com-
mands. Our classification feature matrix and binary classifier
are generated through the following steps:
(1) From a global attack set generated, randomly sample

a large number of voice commands to be used as an
“attack dataset.”

(2) Randomly sample a large number of users’ voice com-
mands to be used as a “global user dataset” for a global
model (we selected 700 users), or choose a “target user
dataset” for a user-tailored model.

(3) Convert utterance data into the BoW feature data (XB ).
Use “attack dataset,” and “global user dataset” for a
global model and use “attack dataset,” and “target user
dataset” for a user-tailored model.

(4) Compute “one hot encoding” features [15] for selected
matched applications (Xm ).

(5) Define a ground-truth label vector, y, where ith ele-
ment of y, yi , is “1” if ith voice command is a security
critical command, and “0” otherwise.

(6) Fit a binary classificationmodel. Feature sets to be used
areXB andXm , and the binary class ground-truth label
variable is y.

Training User Models. Twice is designed to create a tailored
classification model for each user, and periodically update a
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model based on newly processed voice commands. Hence, to
meet the latency requirements described in Section “Latency
and Resource Usage Requirements,” in addition to detection
accuracy, we also need to consider computing resource usage
overheads that would incur from continuously training and
updating models. Being mindful of those requirements, we
consider three lightweight classification algorithms, logistic
regression, XGboost and SVM with appropriate regulariza-
tion methods to prevent over-fitting problems.

Cost-sensitive Learning and Hyper Parameter Tuning. We used
a cost-sensitive learning method [10] to train imbalanced
datasets (e.g., for a user-tailored model, the majority of the
train set commands may come from the attack dataset). We
multiply the minority class (target user) with weight parame-
ters, ensuring that the minority class also equally influences
the classification model. The overall training latency will
not change as it merely multiplies parameters in the loss
function. We used the grid search method to select an opti-
mal parameter set that would minimize the average EERs.
The optimized set of hyper parameters include cost-sensitive
learning parameters, regularization parameters, and classifi-
cation algorithm specific parameters.

5 IMPLEMENTATION AND EVALUATION
This section presents the evaluation results, including the
attack detection accuracy, detection time, and training time.

Software and Hardware Used
All of our classification models were implemented using
Python on Ubuntu 16.04 (64-bit). The “sklearn” module was
used to implement a logistic regression and SVM, and the
“XGboost” module was used to implement XGboost. All of
our experiments were executed on a single PC equipped
with an Intel Core i7-6700 CPU (3.40GHz) with 4 cores, 8GB
(2400MHz DDR4) memory, and 1TB (64MB Cache) 7200 RPM
SATA 6Gb/s hard drive.

Setup
To evaluate the performance of the global model and user-
tailored models with respect to the number of voice com-
mands used, we divided the users into 6 groups as shown in
Table 4. The first group includes the users who used 20–29
voice commands until the 26th day in the November dataset,
the second group 30–49 commands, the third group 50–99
commands, and so on. Note, the November dataset was used
for training models and computing EERs. The December
dataset was used as “unseen test data” for measuring the
attack detection accuracy using optimal threshold values
(derived from EERs).

As for the attack set, the time and order (sequence) in
which the attacks are performed is irrelevant; i.e., attack

Table 4: 6 user groups categorized by the number of com-
mands used until the 26th day in November.

# commands 20–29 30–49 50–99 100–499 500–999 ≥1,000
# users 71,813 53,296 29,265 9,679 339 195

commands can be used at any time in any order. Hence,
We performed 5-fold cross validation (CV) to reduce any
bias that might be introduced through randomly splitting
training and testing sets. The number of attack commands
selected for each of the 99 risk categories described in Section
“Attack Set Generation” are vastly different. To maintain size
balance across risk categories, we randomly selected 1,000
attack commands from each category and included them in
the training/testing sets. For those categories that have less
than 1,000 commands, we included all commands.
As for users’ genuine (own) commands, we trained user-

tailored classification models using the data from the first 26
days, and evaluated the detection accuracy and overheads us-
ing the commands submitted between the 27th and 30th (last)
day. While creating these evaluation sets, we only selected
“target users” (those to be evaluated) who used at least 6 com-
mands in the four-day evaluation period (27–30th). As for
the first four user groups who used less than 500 commands,
we randomly selected 1,000 target users from each group
for evaluation. As for the last two groups who used 500 or
more commands, we used all users’ data as target users to be
included in the evaluation sets. To train the global (default)
model, we randomly selected 700 users who used 20 or more
commands in November, and used the commands they used
during the first 26 days as the training set. To test the global
model, we used the same target user groups described above.
To create user-tailored binary classification models, we

combined each target user train set with 5 different attack
train sets (from 5-fold CV) – effectively training 5 different
models per target user (target user train set commands re-
mained the same), and computed average EERs from the 5
cross validation attempts. As for creating the global binary
classification model, we used the train set of 700 users, and
combined their commands with 5 different attack sets to
generate 5 different global models. We then tested 5 global
models on each target user and computed the average EERs.
In these experiments (see next section), the target user sets
and attack sets – both the training and test sets – did not
have any duplicating utterance entries.

To evaluate the performance of Twice against those who
have used security-critical commands, we selected all users
who have used 20 ormore commands and at least one security-
critical command in November. There were 415,831 users
(23.99%) who belong to that category. We used the same
techniques described above to train and evaluate the clas-
sification models. In these experiments, there were some
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duplicating utterance entries in the target user sets and at-
tack sets, taking replay attack possibilities into consideration
(see Section “Security-critical Command Users”).

Attack Detection Accuracy and Overheads
The accuracy goal of Twice is to correctly identify a tar-
get user’s own commands, and reject attack commands. To
evaluate this for the three classification algorithms (logis-
tic regression, XGboost, and SVM), we use EERs. The mis-
classifying error rate for target user commands is referred to
as “false rejection rate” (FRR), and the mis-classifying error
rate for attack commands is referred to as “false acceptance
rate” (FAR). Our binary classifiers return a probability score
that represents the likelihood of a command being an attack,
computing probability scores for every command in a given
evaluation set. A value at which the FAR is equal to the FRR
for a given command set determines the EER for a target
user.
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Figure 1: Average EER values across the 6 user groups tested
with the four-day evaluation set.

Equal Error Rates. The average EER values are shown in Fig-
ure 1. As for the global model evaluation, logistic regression
outperformed XGboost across all user groups with statistical
significance (all p < 0.01, Wilcoxon signed-rank test with
Bonferroni correction) but showed statistically significant
superiority for just two user groups (those who used between
20–29 commands and 100–499 commands) against SVM (all
p < 0.01, corrected Wilcoxon signed-rank test).

With the user-tailoredmodels, logistic regression and SVM
outperformed XGboost for all user groups (all p < 0.01, cor-
rected Wilcoxon signed-rank test). Using Pearson’s correla-
tion, we found a negative correlation between the number
of voice commands used and average EERs of all three user-
tailored models (ρ = -0.23, p < 0.01) – demonstrating that
the detection accuracy of the user-tailored models would
improve with the increase in the use of the voice assistant.
Overall, the best performing global model (logistic re-

gression) outperformed the user-tailored models for those

who used less than 500 commands. However, all three user-
tailored models outperformed the global model for those
who used more than 500 commands (all p < 0.01, corrected
Wilcoxon signed-rank test). To maintain consistently low
EERs, Twice should start with the global model for new users
(available immediately), and switch to the user-tailored mod-
els when users use about 500 commands.

Training Overheads and Detection Time. Table 5 shows the
average time taken and average memory used for training
each user-tailored model and the global model. It also shows
the average attack detection (classification) time for classify-
ing each command. To demonstrate the worst case overheads
for the user-tailored models, we only considered the models
generated for the 379 users who used 500 or more commands
in November.
As for the user-tailored models, logistic regression and

XGboost took 0.5 and 1.0 seconds on average for training,
respectively. SVM was the slowest, taking 2.9 seconds on
average. The training time, memory usage, and detection
time data all passed Shapiro-Wilk normality test (allp < 0.05),
and pairwise t-tests show statistically significant differences
between the three algorithms with respect to training times
(all p < 0.01, paired t-test with Bonferroni correction). We
observed similar results for memory usage: SVM used about
15 MB more memory than the other two algorithms (all
p < 0.01, corrected t-test). As for average detection times,
we measured the time it took for a single command to be
classified through a trained model. Logistic regression was
the clear winner with about 0.11 milliseconds (all p < 0.01,
corrected t-test). We observed similar trends for the global
model.
Considering those EER and overhead results, logistic re-

gression seems to be the obvious choice for training both the
global model and user-tailored models. All our later analyses
focus on logistic regression implementations.

Table 5: Average training time (seconds) and memory used
(megabytes) to train models for those who used 500 or more
commands. Average detection time (milliseconds) is also
shown. Standard deviations are shown after each average
value.

Global model User-tailored model
Logistic XGboost SVM Logistic XGboost SVM

Training time (sec) 3.4 (0.13) 5.3 (0.07) 36.2 (22.35) 0.5 (0.01) 1.0 (0.01) 2.9 (1.66)
Memory usage (MB) 961.43 (0.05) 969.63 (0.62) 1071.13 (83.00) 821.67 (0.01) 823.89 (0.08) 837.03 (5.08)
Detection time (ms) 0.14 (0.04) 1.51 (0.18) 0.64 (0.06) 0.11 (0.02) 1.55 (0.18) 0.64 (0.06)

Accuracy Against Unseen Data. The binary classifiers gener-
ated from the previous evaluation, and the optimal threshold
values determined from the EERs were used to measure the
attack detection accuracy against the December dataset. We
generated an “unseen test set,” applying the same technique
presented in Section “Attack Set Generation” to select 260,406
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attack commands.We used the sampling technique described
in Section “Setup” to maintain size balance across risk cat-
egories, selecting 17,092 commands to be included in the
final test set. We used the same set of target users selected
previously, and used all of their December commands se-
quentially to measure FRRs during a month period. Table
6 shows the FAR across 6 user groups. Similar to the EER
results, the global model achieves low average FAR at 4.3%
and performs better than the user-tailored models for the
first three user groups; however, for those who have used
100 or more commands, the user-tailored models achieve
lower FARs between 1.7–4.3%.

Table 6: Average FARs measured using the December attack
set.

Global model User-tailored model
# Commands 20–30 30–50 50–100 100–500 500–1,000 >1,000

FAR 4.3% (0.03) 10.1% (0.10) 8.34% (0.08) 5.9% (0.06) 4.3% (0.04) 2.3% (0.02) 1.7% (0.02)

To demonstrate FRR consistency over time, we show FRRs
from day 1 to 31 in Figure 2. As for the occasional users,
the user-tailored models showed inconsistent, increasing
FRRs – this may be due to those occasional users using new
commands that they have not used before. The average FRRs
were much smaller andmore stable for those who used 500 or
more commands though. On the other hand, the global model
showed more consistent FRR for all user groups, including
those light users. Those results confirm that the global model
should be used initially to maintain consistent FRRs below
10%, and eventually the user-tailored models would have to
be used to achieve FRRs below 5%.

Global model User−tailored model

0 10 20 30 0 10 20 30
0.0

0.1

0.2

Day

F
R

R

# Commands 20−29 500−999 ≥ 1,000

Figure 2: Average FRRsmeasured using the December target
user commands, and plotted over a month period.

Security-critical Command Users
As described in Section “Setup,” we experimented with 29,979
users who have previously used security-critical commands
– dividing them into three groups based on the proportions
of security-critical commands being used: “less than 10%,”
“10–20%,” and “more than 20%” (see Section “Security-critical
Command Usage Frequencies”).

We measured the average EERs following the same set-
tings used above. The results are shown in Figure 3. For all
three graphs, the global model (with 5% or less EER) out-
performed the user-tailored models for the first three user
groups (all p < 0.01, corrected Wilcoxon signed-rank test).
The user-tailored models started outperforming the global
model for those who used more than 500 commands: from
the first graph, we found statistically significant difference
in the EERs (between the global model and user-tailored
models) for the groups who used 500–999 commands and
1,000 or more commands (all p < 0.01, corrected Wilcoxon
signed-rank test); from the second graph, only the 500–999
user group showed statistically significant difference – this is
because the other heavy user groups have small sample sizes.
By using the two models interchangeably, Twice will main-
tain average EERs below 5% even for those who frequently
use security-critical commands.
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Figure 3: Average attack detection EERs for the three groups
who used different proportions of security-critical com-
mands.

6 DISCUSSIONS
Threat Model Mitigation
Results from Section “AccuracyAgainst UnseenData” demon-
strate that Twice is capable of detecting voice synthesis or
hidden voice command attack scenarios (anomalous use of
security-critical commands) with about 95% accuracy (TRR).

Integration with Existing Solutions
Twice uses classification features that are completely dif-
ferent to existing detection solutions that rely on signal-
processing techniques [18, 27]. Hence, we surmise that Twice
can be used as an effective complementary technology to
further enhance user attack detection accuracy. As part of
future work, we plan to evaluate the effectiveness of com-
bining Twice features with features used in existing signal-
processing based techniques.
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User Experience Implications
With existing voice assistants, e.g., Bixby, users are required
to say their voice passwords or first unlock their devices
to submit any useful command. With the deployment of
Twice, such use of explicit authentication could beminimized
– requesting explicit authentication only when potentially
malicious commands with security risks are detected. Fur-
ther, Twice can be deployed as a complementary solution
to improve the overall accuracy of existing voice security
solutions, including voice biometric based authentication
and signal-processing based voice liveness detection solu-
tions (see Section “Related Work”) that may suffer from high
FRRs when used under varying environments. Deployment
of Twice would reduce the overall FRR (less annoying for
users), and improve the UX of voice security. Twice can
be activated immediately for new users, and protect them
from suspicious uses. FRRs would be consistent around 10%
initially but would gradually fall with the use of more com-
mands (see Figure 2). Once Twice switches to user-tailored
models, FRRs would fall below 5%. Even for those who fre-
quently use security-critical commands, we expect EERs
below 5%. To further reduce user frustration, user-tailored
models can be updated periodically whenever a user is asked
to enter her password to authenticate a security-critical com-
mand – this would help Twice correctly classify the similar
security-critical commands if they are frequently used.

Limitations
Twice cannot detect replay attacks that simply replay recorded
commands. Hence, Twice would have to be deployed as a
complementary solution to existing replay attack detection
solutions. Having said that, we argue that such naive replay
attacks are likely to have limited security impact: dedicated
attackers would try to combine replay attacks with voice
synthesis attacks to increase the attack severity (e.g., change
a user’s recorded banking command to send money to a
rogue recipient). We surmise that Twice would be moder-
ately effective in detecting this type of hybrid attack as the
words assigned with high importance weightings in the at-
tack features would likely remain (to maintain original attack
intention), and other words with high importance are likely
to be added to increase attack severity.
Another limitation is that our attack sets have been gen-

erated synthetically and only cover risks discussed in [12] –
real-world attack commands may have different characteris-
tics. If real-world attack sets become available in the future,
it would be necessary to evaluate Twice against such sets.

7 RELATEDWORK
Several techniques have been proposed to detect voice replay
or synthesis attacks replayed through loudspeakers. Feng

et al. [13] and Liu et al. [22] propose the use of wearable
devices, such as eyeglasses, earbuds, or necklaces, to detect
voice liveness. Their approaches check for the presence of
users’ physical body and muscle movements to verify that de-
vices owners have indeed submitted voice commands being
processed. They achieved about 97% accuracy in detecting
voice liveness but rely on the use of earbuds, which are ad-
ditional hardware that users would have to buy, carry, and
use. Zhang et al. [36] monitor unique articulatory gestures
using sound wave reflection techniques to check voice live-
ness. They achieved about 99% accuracy but rely on users
physically holding their devices near their ears.
Recently, an extensive study was conducted to analyze

the performances of machine learning-based human liveness
detection techniques proposed as part of the “2017 ASVspoof
competition” [18]. According to the study findings, the EERs
varied from 6.73% to 45.55%. The best-performing approach
combined three deep learning models and one SVM model
to achieve high accuracy [20]. Logan et al. [4] use sub-bass
over excitation and low frequency signal features to detect
electronic speakers, achieving 100% TAR and 1.72% FRR in
quiet locations. Just like any other voice biometric based
technologies, however, these approaches would all face sig-
nificant accuracy losses when there are background noise
variations and environmental changes. Further, combining
multiple complex models and features require heavy compu-
tational resources that sit uneasily with the latency require-
ments described in Section “Latency and Resource Usage
Requirements.” Being mindful of such constraints, Twice
was designed to use small number of lightweight features,
and guarantee fast training and classification times as well
as model simplicity. Twice is the only solution known to date
that analyzes the text utterances to detect voice presentation
attacks.

8 CONCLUSIONS
The combined use of the global model and user-tailored
models are integral in maintaining low and consistent EERs
at around 3.4% for all users. To maximize detection accuracy
and minimize false rejections, we recommend a switch (from
global to user-tailored) when users have used up to about
500 commands. Even for those users who frequently use
security-critical commands, Twice is capable of achieving
EERs below 5%.
Training a user-tailored model only takes about 0.5 sec-

onds in the worst case scenario, and attack detection deci-
sions can be made within 0.11 milliseconds. Those results
indicate that Twice is a highly efficient and accurate solution
that could be used as a complementary solution to signifi-
cantly improve voice attack detection accuracy, and improve
user experiences in using voice assistants.
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