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Abstract—The “2019 Automatic Speaker Verification Spoof-
ing And Countermeasures Challenge” (ASVspoof) competition
aimed to facilitate the design of highly accurate voice spoofing
attack detection systems. the competition did not emphasize
model complexity and latency requirements; such constraints
are strict and integral in real-world deployment. Hence, most
of the top performing solutions from the competition all used
an ensemble approach, and combined multiple complex deep
learning models to maximize detection accuracy – this kind
of approach would sit uneasily with real-world deployment
constraints. To design a lightweight system, we combined the
notions of skip connection (from ResNet) and max feature
map (from Light CNN), and evaluated the accuracy of the
system using the ASVspoof 2019 dataset. With an optimized
constant Q transform (CQT) feature, our single model achieved
a replay attack detection equal error rate (EER) of 0.37% on
the evaluation set, surpassing the top ensemble system from
the competition that achieved an EER of 0.39%.

Index Terms—voice assistant security, voice spoofing attack,
voice synthesis attack, voice presentation attack detection

I. Introduction
Voice assistants are quickly being upgraded to support

security- and privacy-critical commands such as sending
and receiving emails, taking photos and posting on social
media, and making payments. Provision for such advanced
features make voice assistants lucrative targets for attack-
ers to exploit. “Voice spoofing attacks” (also referred to
as voice replay attacks) are perhaps the easiest and most
accessible way for attackers to exploit voice assistants.
These attacks involve recording a victim’s use of voice
assistants, and simply replaying them through a loud-
speaker to bypass voice biometric authentication services
enabled on the victim’s target devices. “Voice synthesis
(or conversion) attacks” are more advanced attacks, which
involve collecting the victim’s voice samples, training the
victim’s voice biometric models using machine learning
techniques, and generating new voice attack samples.
There are free tools available for training voice models,
including Google’s Wavenet or Tacotron [1], [2]. “Auto-
matic speaker verification spoofing and countermeasures

challenge” (ASVspoof) competitions have been organized
to encourage researchers to develop voice spoofing attack
detection systems and to compete for the improvement of
voice detection accuracy. Competitions were held in 2015,
2017, and 2019 [3]–[5] – new training sets and evaluation
sets have been released for each competition.

In this study, we focus on the latest competition,
ASVspoof 2019 dataset, and compare the performance of
our solution against the best performing solutions from
that competition. ASVspoof 2019 provided two different
types of attack sets: (1) physical access (PA) attack set
that is generated from replaying recorded voices through
loudspeakers, which designed to prevent “Voice spoofing
attacks”, and (2) logical access (LA) attack set that
involves synthetic generation by training victims’ voice
models, and playing the trained voice models directly to
the target voice assistant system, which designed to pre-
vent “Voice synthesis attacks”; thus, there is no recording
nor replaying involved in the generation of the second set.
The best performing model against the ASVspoof 2019
PA set achieved an equal error rate (EER) of 0.39%.
An EER represents an error rate at which the rate of
mis-classifying genuine live samples as attacks is equal
to the rate of mis-classifying attack samples as genuine
live samples. The participants, however, used an ensemble
approach comprising of multiple deep learning models [5]
Another ensemble solution that combined multiple light
CNN (LCNN) models achieved an EER of 0.54% on the
PA set, and and EER of 1.86% on the LA set [6]. An
ensemble solution that used multiple residual network
(ResNet) models with the squeeze and excitation (SE)
technique achieved an EER of 0.59% for the PA set, and
6.7% for the LA set [7].

Despite their competitive accuracy results (low EERs),
such ensemble (multi-model) solutions can be challenging
with latency and model complexity requirements imposed
by real life businesses. Owing to the users’ timely re-
sponse expectations and exploding server cost issues,
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businesses typically require model sizes to be less than
a few megabytes (also considering on-device deployment
scenarios), and detection (prediction) time to be less than
100 ms.

To satisfy those business requirements, we propose a
deep learning architecture called “ResMax” that combines
the skip connection notion from ResNet and with the
max feature map notion from LCNN. By using our
optimized constant Q transform (CQT) feature, ResMax
achieved an EER of 0.37% on the PA set and 2.19% on
the LA set. Compared to the top performing solutions
from the ASVspoof 2019 competition that used ensemble
approaches (multiple heavy and complex deep learning
models), our ResMax single model is capable of achieving
the top EER on the PA set, and would be ranked third
among the LA set solutions. For comparison, the top
performing single model solution that used an LCNN
architecture with fast Fourier transform as a feature
achieved an EER of 4.53% on the LA set. As for the PA set,
the top performing single solution achieved approximately
0.5% EER [5].

II. Methodology
A. Feature Engineering

We initially experimented with two most used spectral
features in the ASVspoof 2017 and 2019 competitions:
(1) constant Q transform (CQT), and (2) short time
Fourier transform (STFT). [4], [5], [8] After a few trials
and observing model accuracy, we noticed that CQT
was more compatible with the proposed model, demon-
strating significantly superior model accuracy. Hence, we
focused on further tuning CQT parameters to optimize
model accuracy. CQT explores an audio signal x[n] in
time-frequency representation by dividing the signal into
shorter frames, and analyzing the audio in frequency
domain. The CQT output in discrete form is as follows:

Xk =

Nk−1∑
n=0

Wk,nxne
−j2πQn/Nk , (1)

where k is the index of a frequency bin, which ranges from
1 to the total number of frequency bins (K); Nk is the
frame size of kth bin, and W is the windowing function
that is used for tapering each frame; and Q is the quality
factor that determines the feature resolution. To transform
a given data series into a frequency domain, CQT applies
filters as center frequency fk and bandwidth of Bk in kth
frequency domain. The center frequency of the kth filter
is fk = (21/C)kfmin, where fmin is the bandwidth of the
lowest frequency, and C is the number of octaves in each
filter. Q is determined as fk/Bk.

For CQT optimization, we attempted frequency vari-
ations in fmin and K parameters. The highest center
frequency, fK , was determined by (21/C)Kfmin. We tested
two fmin values, 1Hz and 32Hz, to analyze the effects of
altering low frequency components. We also experimented

with variations of K to try fK values at 323Hz and
1024Hz to see the effects of high frequency components.
For fair comparison with constant resolution in the time
and frequency domain, we fixed the number of bins per
octave and hop size to 12 and 512, respectively. We used
Hann window as the windowing function.

As for the sample lengths (duration) we used 9 seconds.
For samples that were longer than 9 seconds, we used
the first 9 seconds of that sample. For samples that were
shorter than 9 seconds, we replicated the samples and
repeatedly concatenated them until we had a 9-second
sample. We did not employ any normalization method.

(a) MFM

(b) ResMax Block (c) Model Architecture

Fig. 1. ResMax architecture descriptions: (a) represents an MFM
layer; (b) represents a ResMax block; (c) describes the building
block for the entire model architecture. A ResMax block has four
parameters: f is the number of ResMax filters, k is the kernel size
(k, k) in convolution layer. l is 1 if a ResMax block has an additional
convolution layer with a following MFM layer (dotted Conv and
MFM blocks in (b)), and 0 otherwise. m is 1 if a ResMax block has
an additional max pooling layer (dotted MaxPool block in(b)), and
0 otherwise.

B. ResMax: Residual Network with Max Feature Map
Both LCNN and ResNet based models have performed

well against the ASVspoof 2017 and ASVspoof 2019
evaluation datasets, demonstrating top performances with
respect to EERs [6], [7], [9], [10]. However, all of the
top performing solutions to date have used the ensemble
approach, combining multiple deep learning models to
minimize error rates. Such models do not consider model
latency and complexity requirements as explained in
Section I. To design a lighter model, we propose “Residual
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network with Max feature map” (ResMax) blocks that
integrate the max feature map (MFM) notions from
LCNN and skip connection notions from ResNet. MFM
layer is used after a convolution layer (see Fig. 1 (a)).
MFM initializes two layers with the same dimensions, and
selects the maximum of two items from the same position
in the two layers. This process improves the robustness
of the model, and makes the model lighter through filter
selection. [11]

A ResMax block that uses the skip connection network
is described in Fig. 1 (b). A skip connection adds original
input to a processed network, F (x), where output = input
+ F (input) (See Fig. 1 (b)). Here, the training weight
parameters in F (input) imply training the residual in
output − input. This residual part would often have values
close to zero, and helps with solving the vanishing gradient
problem during back propagation. Further, the 2 by 2
MaxPooling technique used in a ResMax block reduces
the number of parameters and the model complexity as a
result.

The full model architecture comprising of 9 ResMax
blocks is shown in Fig. 1 (c). A flatten layer follows the
last ResMax block. We then have a dropout layer, and
a dense layer that outputs the results using the softmax
function.

To demonstrate the performance of the ResMax model,
it is necessary to compare it with existing models that
performed well in the ASVspoof 2019 challenge.

Table I describes the top performing ensemble models
that participated in the ASVspoof 2019 [6], [12]–[15]. The
T10 model ranked fourth for the PA data with ResNet
Architecture, which has 36 layers with the data augmen-
tation technique. The T10 model was an ensemble model
of 6 ResNet models with different features such as LFCC,
IMFCC, STFT, GD gram, and Joint gram [13]. The T44
model ranked third in the PA data using CQCC and
logspectogram features with SENet, ResNet, and Dilated
ResNet architectures. Five models were ensembled in the
T44 model, and the single best model used logspectogram
feature with SENet34 [12]. The T45 model ranked second
in both the LA and PA data using an ensemble approach
with features such as LFCC, CQT and FFT. Their FFT-
LCNN model was the best performing single model for the
LA data, and CQT-LCNN was the best performing single
model for the PA data [6]. The T50 model ranked 5th
in the LA data, and attempted data augmentation using
variational autoencoder on CQT feature [14]. The T60
model ranked third in the LA data. It used FFT feature
with CNN, CRNN, 1D-CNN, and Wave-U-Net and shallow
models of IMFCC-GMM and ivector-SVM [15].

We used the development and evaluation set of
ASVspoof2019 competition data to compare the per-
formance of ResMax model with the ensemble models
described in Table I.

TABLE I
Ensemble solutions from ASVspoof 2019 and the list of models

used.

Model Data All models used
T10 [13] PA LFCC-ResNet, GD gram-ResNet .. Joint gram-

ResNet
T44 [12] PA logspec-SENet34, CQCC-ResNet .. logspec-

SENet50
T45 [6] LA LFCC-LCNN, LFCC-CMVN-LCNN .. CQT-

LCNN
PA CQT-LCNN, LFCC-LCNN, DCT-LCNN

T50 [14] LA CQT-CGCNN, CQT-ResNet18 .. CQT-
ResNet18IVec

T60 [15] PA FFT-CNN, FFT-CRNN, IMFCC-GMM,
SVMs-IVec

C. Hyper Parameter Tuning
To handle unequal distribution of attack samples and

live genuine samples in the ASVspoof 2019 train set (i.e.,
an imbalanced dataset issue), we applied cost-sensitive
learning method [16]. Our primary evaluation criterion
was EER that considered attack samples and genuine
samples with same importance. Thus, we multiplied the
minority class, genuine samples, with weight parameters,
ensuring that the minority class also equally influenced
the classification model. The overall training latency
did not change as it merely multiplies parameters in
the loss function. We used the grid search method to
select an optimal parameter set that would minimize
the EER on the development set. The optimized set of
hyper parameters includes feature extraction parameters,
cost-sensitive learning parameters, classification algorithm
specific parameters, and regularization parameters.

III. Experiments
A. Experimental Setup

For evaluation, we used the LA and PA data from the
ASVspoof 2019 competition [5]. Each data consists of a
training set, a development set, and an evaluation set.
We trained ResMax models using the training sets, and
evaluated the trained models on the development set and
evaluation set.

To measure the detection accuracy, we primarily used
EER, following the rules from the ASVspoof 2019 competi-
tion. The mis-classifying error rate for the loudspeaker was
referred to as “false rejection rate” (FRR), and the mis-
classifying error rate for the human voice was referred to as
the “false acceptance rate” (FAR). Our binary classifiers
return a probability score that represents the likelihood
of a command being on a loudspeaker, computing the
probability scores for every command in a given evaluation
set. There is always a trade-off between FAR and FRR,
and adjusting the threshold value would always lower one
error rate at the cost of increasing the other error rate. A
value at which the FAR is equal to the FRR for a given
command set determines the EER for that given model.
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In addition, we used the minimum normalized tandem
detection cost function (t-DCF) [17], which was also used
(and reported) in the competition. A fixed automatic
speaker verification system provided from the competition
was used to calculate t-DCF values.

We ran 100 epochs to train the proposed models, and
performed 10 training and evaluation sessions – this is
because the models would converge to slightly different
parameters for each run.

B. Hyperparameter Selection

This section describes how we selected the main hyper-
parameters of the ResMax model. We fitted our model 10
times with the proposed hyperparameters and evaluated
averaged EER on the development and evaluation data
set for each of the LA and PA data.

1) CQT Parameter Selection: We experimented with
three different ResMax models based on two different
CQT parameters, fmin and K: CQT-1_100-ResMax,
CQT-1_120-ResMax, and CQT-32_60-ResMax. The first
number in the model name represents the fmin value, and
the second number represents the K value.

Fig. 2 shows the average EERs for CQT-1_100-
ResMax, CQT-1_120-ResMax, and CQT-32_60-ResMax
on development and evaluation set for the LA and PA
data. CQT-1_100-ResMax showed the best performance
for the LA data, and CQT-1_120-ResMax showed the
best performance for the PA data. CQT-1_120-ResMax,
CQT-1_100-ResMax, and CQT-32_60-ResMax showed
statistically significant differences in LA data for both
the development and the evaluation sets (p < 0.01 two
sample t-tests with Bonferroni correction). For PA data,
both CQT-1_120-ResMax and CQT-1_100-ResMax have
a better statistical significance than CQT-32_60-ResNet
model in the development and evaluation sets (p < 0.01
two sample t-test with Bonferroni correction). However, no
statistical significance was detected between CQT-1_120-
ResMax and CQT-1_100-ResMax. CQT-1_100-ResMax
includes low center frequency(1-32Hz) components and
CQT-32_60-ResNet includes high frequency (323 Hz–1024
Hz) components, whereas CQT-1_120-ResMax model in-
cludes both high and low frequency. While both high and
low frequency components are important, we can infer
that the low frequency components are more effective in
both PA and LA.

2) Non-Speech Part Removal: There are silent parts
at the beginning and at the end of any given speech
sample. We designed a simple non-speech part remover
based on sound loudness. When our remove is applied,
a voice sample as shown in (a) of Fig. 3 would be
processed to become (b). Our intuition is that since the
non-speech parts would not have much information, the
model performance may improve if we only use the speech
part to train and test models. Thus, we examined two
ResMax models – one trained with the original samples,

Fig. 2. The CQT-1_100-ResMaX performed best in LA data and
the CQT-1_120-ResMax performed best in PA data. The barplot
indicates the averaged EER with one standard deviation error bar.

and another trained with the silence-removed samples –
for each of the LA and PA data.

Fig. 3 (c) shows the average EER of best performing
ResMax models in LA and PA data with and without
silence removal. As a result, we found that it is better to
train the model with full sound, comprising of both speech
and non-speech parts (all p < 0.01 with two sample t-tests
with Bonferroni correction). These results may indicate
that the ResMax model trained to detect even the non-
speech part in an electronic speaker’s ultra sound.

(a) Original sound (b) Processed sound

(c) Performance comparison

Fig. 3. The non-speech part remover suggested and tested. The
ResMax model worked better without the non-speech part remover.
The barplot indicates averaged EER with one standard deviation
error bar.

3) Sample Duration Selection: Another hyper-
parameter one could consider optimizing is the sample
length: in general, we imagine that the overall performance
would improve with increasing sample input time.
However, when considering the real-world use of voice
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assistants that accept both short commands as well as
long commands, it is important for models to achieve high
accuracy regardless of the input time. To test our model’s
performance against both short and long samples, we
experimented with different input times, varying between
of 3 seconds, 6 seconds, and 9 seconds.

Fig. 4 shows the average EER for CQT-ResMax models
trained with 3-second, 6-second, and 9-second samples.
We used the best performing CQT-ResMax model in the
LA and PA data. The 9-second model showed the best
performance for both the development and evaluation sets
in the LA and PA data. All pairwise difference in the
PA set for both development and evaluation sets were
statistically significant (all p < 0.01 t-test with Bonferroni
correction). As for the LA set, only the 3-second model
and the 9-second model showed statistically significant
difference (p < 0.01 t-test with Bonferroni correction).

Fig. 4. The 9-second model performed best for both development and
evaluation sets in LA and PA data. The barplot indicates averaged
EER with one standard deviation error bar.

4) Other Hyper-parameters: Since the number of attack
samples is more than 10 times larger than the number of
genuine samples in both the LA and PA data, we used
cost-sensitive learning by multiplying the minority class
(genuine command) with certain degrees of weights in
the loss function, ensuring that the minority class also
equally influences the classification model. We set this
weight as 3. We used binary cross entropy error loss with
an Adam optimizer [18]. Initial weights were set using
Glorot’s uniform initializer [19]. The initial learning rate
was 10e-1; we decreased the learning rate to 10e-5 by using
learning rate scheduler with sigmoidal decay function. The
dropout rate was set to 0.7.

C. Experimental Results
In Table II, we rank our ResMax models against the

top five performers from ASVspoof 2019 (including both
multi-model and single-model solutions) with respect to
evaluation set EERs. We also present the EERs of the
top performing single-model solutions in the last few rows
– these do not have rankings, and are in italics. As
the results indicate, CQT-ResMax outperformed all other
single models with respect to both EERs and t-DCFs for

both LA and PA evaluation sets. Its EER superiority
against the best performing PA and LA single models
were all statistically significant (p < 0.0001, one sample
t-test). The evaluation performed on the development set
also showed that the CQT-ResMax model performs the
best for both the LA and PA data with respect to EERs;
however, the T45’s single model performed better with
respect to the t-DCF score on the LA data. As for the
PA data, our CQT-ResMax model outperformed all other
single models.

CQT-1_120-ResMax outperformed all ensemble solu-
tions with respect to both EERs and t-DCFS for the PA
evaluation set, achieving an EER of 0.37%. Its EER su-
periority against T28 (best performing ensemble solution)
was statistically significant (p < 0.0001, one sample t-
test). The CQT-1_120-ResMax model ranked fifth among
all ensemble models in the development set with an EER
of 0.31%. All other models had a lower EER in the
development set compared to the ResMax model – showing
higher EERs in the evaluation set indicate that other
models would have been overfitted to the development
set. We carefully surmise that the CQT-ResMax model is
more robust against overfitting issues compared to other
ensemble models.

As for the LA set, CQT-1_100-ResMax ranked third
with an EER of 2.19% on evaluation set, and ranked
fourth with an EER of 0.56% on the development set
among all ensemble solutions . It did not show statistically
significant superiority against the 4th ensemble solution
T60 with respect to EERs but showed statistically signif-
icant difference against the 5th ensemble solution T24 in
evaluation set (p < 0.0001, one sample t-test).

As for ensemble solutions, we simply added the number
of parameters used across all models; we present the
parameter numbers only for the numbers available in
published papers. Considering that CQT-ResMax is a
single model solution with far less number of parame-
ters (representing model complexity and computational
latency) compared to ensemble solutions, both the LA
and PA accuracy results are significant achievements and
competitively high.

D. Incorrectly Classified Samples
To explore misclassified samples for CQT-1_120-

ResMax in the PA data, we observed the performance of
the development set based on environmental conditions.
Table III shows how EER performance changes depending
on the differences in the verification and the recording
environments of the development set. We trained 10 CQT-
1_120-ResMax models, and recorded the average EER
values for each environmental condition. The most affected
factor was replay device quality. When the quality of
the replay device was A (perfect), the performance was
the worst with an averaged EER of 0.0067, and the
performance improved with declining quality of the replay
device. The more attackers perform replay attacks with
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TABLE II
ResMax performance on the ASVspoof 2019 development sets and evaluation sets. The EERs and t-DCF results are compared against the
top five models from each dataset; models are sorted based on the EER in a descending order. Systems that use a single model are in italic.
#Mo describes the number of models used in an ensemble system. Two top performing single model systems are also shown at the end of
each table. #Params represents the number of parameters contained in the models. (Results that are not public are denoted as hyphens)

LA
# Model t-DCF (Dev) EER (Dev) t-DCF (Eval) EER (Eval) #Mo # Params
1 T05 - - 0.0069 0.22 - -
2 T45 0.0000 0.000 0.0510 1.86 5 1484K
3 CQT-1_100-ResMax 0.0179 0.56 0.0600 2.19 1 262K
4 T60 0.0 0.0 0.0755 2.64 4 -
5 T24 - - 0.0953 3.45 - -
6 T50 0.027 0.90 0.1118 3.56 - -

T45 (FFT-LCNN) 0.0009 0.040 0.1028 4.53 1 371K
T45 (LFCC-LCNN) 0.0043 0.157 0.1000 5.06 1 371K

PA
# Model t-DCF (Dev) EER (Dev) t-DCF (Eval) EER (Eval) #Mo # Params
1 CQT-1_120-ResMax 0.0066 0.31 0.0091 0.37 1 262K
2 T28 - - 0.0096 0.39 - -
3 T45 0.0001 0.0154 0.0122 0.54 3 1113K
4 T44 0.003 0.129 0.0161 0.59 5 5811K
5 T10 0.0064 0.24 0.0168 0.66 6 1330K
6 T24 - - 0.0215 0.77 - -

T28 - - - 0.50 1 -
T45 (CQT-LCNN) 0.0197 0.800 0.0295 1.23 1 371K
T44 (logspec-SENet) 0.015 0.575 0.0360 1.29 1 1344K

high-quality speakers, the harder it would be to detect.
The reverberation time (T60) and room size factors that
cause the channel effect did not have a significant impact
on performance. Also, when the T60 reverberation time
was small, in the ranges of 50–200 ms (A), the EER was
relatively higher at 0.0017. Another interesting result is
that the model have slightly higher risk when the talker-to-
ASV distance or attacker-to-talker distance is far enough.
When the talker to ASV distance or attacker-to-talker
distance is near (A, 10–50 cm) or far (C, >100cm), the
EER was higher than medium distance (B, 50-100 cm).

TABLE III
Detection performance on the ASVspoof2019 Physical Access

evaluation sets in various environments. The A, B, C represent the
classes of each factor which is well described in [5]. All numerical

values represent the average of EER.

Factors A B C

Verification Env.
Room size (S) 0.0047 0.0044 0.0041
T60 (R) 0.0055 0.0029 0.0038
Talker-to-ASV
distance

0.0059 0.0036 0.0042

Recording Env. Attacker-to-
talker distance
(D_a)

0.0051 0.0036 0.0041

Replay Device
Quality (Q)

0.0067 0.0036 0.0009

In the LA data, there are a total of 17 attack types,
6 of which are used in the training and development
sets, and are considered as the known attack set. Two
known attacks (A16, A19) and 11 unknown attacks are

given to the evaluation set. Table IV and Fig. 5 show the
averaged EER values for 13 attack types in the evaluation
set. The A08, A17, A18, and A19 attack types have high
EER. Among them, A17, A18 and A19 were attacks using
only voice conversion. According to [5], the variation of
averaged EER is bigger than the variations in the other
sets. Although the audio samples from A19 are already
trained in the training set, it shows relatively higher EER
than other attacks.

TABLE IV
Detection performance on the ASVspoof2019 Logical Access

evaluation sets in various attacks. Detailed description of each
attack is in [5]. All numerical values represent the average of EER.

ID Type Description EER
A07 TTS vocoder + GAN 0.0022
A08 TTS neural waveform 0.0388
A09 TTS vocoder 0.0003
A10 TTS neural waveform 0.0045
A11 TTS griffin lim 0.0039
A12 TTS neural waveform 0.0002
A13 TTS,VC waveform concatenation & fil-

tering
0.0051

A14 TTS,VC vocoder 0.0012
A15 TTS,VC neural waveform 0.0030
A16 TTS waveform concatenation 0.0039
A17 VC waveform filtering 0.0561
A18 VC vocoder 0.0225
A19 VC spectral filtering 0.0317
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Fig. 5. The averaged EER for 13 attack types in evaluation set. The
barplot indicate averaged EER with one standard deviation error
bar.

IV. Related Work
Hadid et al. [20] studied general spoofing and anti-

spoofing in the biometric authentication system. They de-
scribed an evaluation methodology for assessing spoofing
and discussed its countermeasures. [21]

Several techniques have been proposed to detect voice
replay or synthesis attacks replayed through loudspeakers.
Liu et al. [22] proposed the use of wearable devices, such as
eyeglasses, earbuds, or necklaces, to detect voice liveness.
They achieved approximately 97% accuracy in detecting
voice liveness but relied on the use of earbuds. Zhang
et al. [23] monitored unique articulatory gestures using
sound wave reflection techniques to check voice liveness.
They achieved approximately 99% accuracy but relied on
users physically holding their devices near their ears. As
part of the ASVspoof 2019 competition, several researchers
have proposed machine learning-based liveness detection
solutions. According to the reported recent competition
results, the EERs varied from 0.22% to 92.36% for LA
attacks, and 0.39% to 92.64% for PA attacks. However, the
top five systems [6], [12]–[15] for both the LA and PA sets
all used the ensemble approach and combined multiple
models (see Table I). This is because the competition
only emphasized the accuracy aspects of building a voice
spoofing attack detection system, and did not consider the
real-world deployment scenarios where minimizing model
complexity and detection latency are also integral. To that
end, most of the top performing solutions explored to date
would not satisfy those model latency and complexity re-
quirements. In comparison, the proposed ResMax models
can perform competitively well even with only a single
model and 262K parameters.

V. Discussions
A. Speech and Non-Speech Part Removal

If the quiet parts of the beginning and end of a given
sample are noises that provide no information, training the
model with only the speech part should improve the overall
performance. To demonstrate this, we experimented with
removing non-speech parts and training those processed

samples. However, unlike our expectations, our models
performed better when all parts of a given sample were
used for training and testing. These results are inline
with the results presented in [6]. They also trained
their CQT-LCNN model after removing non-speech parts
but demonstrated degrading performances. One possible
explanation is that when a speaker is turned on, and even
if there is no speech being replayed during the beginning
or end of a given sample, some inherent noises generated
through that speaker are being picked up and trained by
our deep learning models.
B. Variability of the Model Performance

As a model is trained, the parameters are fitted in
a way that optimizes the loss function using randomly
selected batch samples during each epoch. Even if we train
with the same number of epochs, the model parameters
fit differently each time because the batch samples are
picked randomly. Therefore, the EER and t-DCF results
are also slightly different for each training session. We
conducted 10 training sessions for each model to determine
the variability of the results, and presented standard
deviations around 0.19. Since there were 10 random
variables, the t-test was used to evaluate whether the
differences in the sample mean of the EER of the proposed
models and the EERs of other models were statistically
significant.
C. High Performing Model Architectures for Detecting
Voice Spoofing

As can be seen from Table I, all the models that achieved
excellent results in the ASVspoof 2019 competition used
various deep learning methods in an ensemble, and in
particular, ResNet and LCNN models were considerably
used. The proposed ResMax is also an architecture that
combines ResNet and LCNN, and it is shown that the
deep learning architecture of ResNet and LCNN works
well for voice spoofing detection.

VI. Conclusions
Existing voice spoofing attack detection solutions have

been designed without considering real-world model com-
plexity and detection latency requirements, and often
consist of multiple heavy and complex deep learning
models. Such solutions would not be considered suitable
given the tight model size and latency requirements. In
comparison, our CQT-1_120-ResMax model used only a
single deep learning model with far fewer model parame-
ters to outperform the top performing PA solution from
evaluation set, achieving an EER of 0.37% compared to
the current best competition EER of 0.39%, which is an
ensemble solution. As for the LA set, we rank third with
an EER of 2.19%, just behind the second best ensemble
solution that achieved an EER of 1.86% in the evaluation
set. Among the single model systems, although CQT-
1_120-ResMax used the least number of parameters, it
demonstrated significant superiority in detection accuracy.
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