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A Powerful Pathway-Based Adaptive Test
for Genetic Association with Common or Rare Variants

Wei Pan,1,* Il-Youp Kwak,1 and Peng Wei2,*

In spite of the success of genome-wide association studies (GWASs), only a small proportion of heritability for each complex trait has

been explained by identified genetic variants, mainly SNPs. Likely reasons include genetic heterogeneity (i.e., multiple causal genetic

variants) and small effect sizes of causal variants, for which pathway analysis has been proposed as a promising alternative to the stan-

dard single-SNP-based analysis. A pathway contains a set of functionally related genes, each of which includes multiple SNPs. Here we

propose a pathway-based test that is adaptive at both the gene and SNP levels, thus maintaining high power across a wide range of

situations with varying numbers of the genes and SNPs associated with a trait. The proposed method is applicable to both common

variants and rare variants and can incorporate biological knowledge on SNPs and genes to boost statistical power. We use extensively

simulated data and a WTCCC GWAS dataset to compare our proposal with several existing pathway-based and SNP-set-based tests,

demonstrating its promising performance and its potential use in practice.
Introduction

Genome-wide association studies (GWASs) have been suc-

cessful in identifying many genetic variants, mainly SNPs,

associated with complex and common disease (see, for

example, the online Catalog of Published Genome-Wide

Association Studies). However, only a small proportion of

the estimated heritability for most human complex traits

can be explained by the identified genetic variants. One

possible reason is that, due to small effect sizes and genetic

heterogeneity (i.e., multiple causal variants), the standard

single-SNP-based analysis might not have enough power

to identify many causal variants. Although many human

genetic diseases are caused by variants in multiple genes,

it has been increasingly recognized that, because genomic

variants of these genes lead to the same or similar pheno-

types, these genes are likely to be functionally related,

and such functional relatedness can be exploited to iden-

tify novel genes containing variants related to disease.

One way to organize functionally related genes is through

biological pathways, such as annotated in the Kyoto Ency-

clopedia of Genes and Genomes (KEGG) database.1 Associ-

ation analysis of multiple genes with related functions is

here generically called pathway analysis (or gene set anal-

ysis), which might improve power over testing on single

SNPs or single genes one by one. One convincing source

of evidence is from tumor sequencing studies, e.g., The

Cancer Genome Atlas (TCGA).2 Although a few genes

(e.g., TP53 [MIM: 191170]) harbor manymutations related

to cancer, most harbor few mutations in a tumor-depen-

dent way. For example, a tumor might contain mutations

in PTEN (MIM: 601728), not in NF1 (MIM: 613113),

whereas another tumor contains mutations in NF1, not

in PTEN. Individually, each of the genes in a related

pathway has only a low mutation frequency, but collec-
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tively, they have a much higher mutation frequency.

Hence, for a disease (e.g., cancer) involving a few path-

ways, a pathway analysis by aggregating information

across multiple genes in a relevant pathway will boost sta-

tistical power, and thus is preferred. For example, among

the 316 ovarian cancer (MIM: 167000) tumors studied by

TCGA, 45% of them had genomic alterations (somatic mu-

tations and DNA copy-number changes) in the PI3K/RAS

signaling pathway. This pathway contains seven genes—

PTEN, PIK3CA (MIM: 171834), AKT1 (MIM: 164730),

AKT2 (MIM: 164731), NF1, KRAS (MIM: 190070), and

BRAF (MIM: 164757)—each with only low to moderate

genomic alterations in 7%, 18%, 3%, 6%, 12%, 11%, and

0.5% of the tumors, respectively; hence, it should be

more powerful to detect genomic alterations at the

pathway level than at the individual gene level.

The importance of pathway analysis and many existing

approaches have been reviewed by several authors.3–5

Many pathway-based analysis methods for GWAS data

are evolved from those for gene expression data;6,7 how-

ever, higher-dimensional data are involved in the former

with up to hundreds to thousands of SNPs, compared to

only tens to hundreds of genes in the latter. On the other

hand, because it is known that not all the SNPs in any

gene or any pathway are related to a disease, statistically

it is most important and challenging to adaptively aggre-

gate information over multiple unknown causal SNPs

while minimizing the effects of non-causal SNPs. Existing

approaches have some limitations. For example, a popular

approach8 used the minimum p value of the multiple SNPs

in a gene to summarize association information for the

gene, which is not efficient if there are multiple weakly

associated SNPs inside the gene. Two other methods,

GATES-Simes9 and HYST,10 combine gene-level p values

based on GATES,11 a gene-based test using an extended
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Simes procedure to correct multiple testing while calcu-

lating the p value quickly and possibly based on SNP

summary statistics (instead of individual-level SNP and

phenotype data); GATES-Simes uses an extended Simes

procedure to extract the most significant gene-level p value

for a pathway, whereas HYST uses Fisher’s method to

combine multiple genes’ p values. Hence, as to be

confirmed later, GATES-Simes behaves like the minimum

p value method, losing power if there are multiple SNPs

and/or multiple genes with only weak association

strengths; in contrast, HYST, as Fisher’s method, is ex-

pected to be low powered if an increasing number of the

genes in a pathway are not associated with the trait.

A very recent approach12 uses a variance-component test

to aggregate information across multiple SNPs non-adap-

tively, which will lose power in the presence of many

non-associated genes. The fundamental problem is the

non-adaptive nature of these methods at both the SNP

and gene levels. Our proposal is based on a highly adaptive

test called adaptive sum of powered score (aSPU) test orig-

inally proposed for analysis of rare variants (RVs).13 The

main idea of the aSPU test is that, because we do not

know which and how many SNPs in the given set are asso-

ciated with a trait, we first construct a class of tests over-

weighting a sequence of increasingly smaller sets of the

top-ranked (i.e., most statistically significant) SNPs, then

select the test with the most significant result (with a

proper adjustment for multiple testing). For relatively

small sets of RVs, the aSPU test often outperforms other

tests.13 Here we extend the aSPU test to pathway analysis

of either common variants (CVs) or RVs. One change we

made is that, because the analysis unit of a pathway anal-

ysis is a gene but genes can contain quite different

numbers of SNPs, we need to modify the aSPU test to treat

each gene equally a priori. More importantly, the proposed

test is adaptive with respect to both genes and SNPs, which

is critical because we do not know a priori howmany genes

in a pathway are associated and how many SNPs in an

associated gene are associated with the given trait. We

will compare our proposal with two aforementioned

pathway-analysis methods, GATES-Simes and HYST, and

two other popular ones, one based on penalized regression

(called GRASS) and the other as a representative two-step

approach based on SNP screening then combining as

implemented in the software PLINK (called simply Plink

in the sequel),14,15 largely because the latter two methods

have been widely applied to GWASs in practice.16–18
Material and Methods

Data and Notation
We consider the most popular case-control study design as adop-

ted inGWASs, though themethods can be extended to other study

designs, e.g., with a quantitative or survival trait. Suppose that for

subject i ¼ 1,.,n, Yi ¼ 0 or 1 is a binary trait, e.g., an indicator of

disease, and Xi ¼ (Xi1,., Xik)
0 is the vector of the genotype scores

for k SNPs, possibly drawn from multiple genes in a pathway. We
Th
use additive coding for each SNP; that is, Xij is the number of the

copies of an allele at SNP j for subject i. It is possible to include

other covariates, but for simplicity we ignore them. We consider

a logistic regression model:

Logit½PrðYi ¼ 1Þ� ¼ b0 þ
Xk
j¼1

Xijbj: (Equation 1)

We’d like to test the null hypothesis H0 : b ¼ (b1,., bk)
0 ¼ 0; that

is, there is no association between any SNPs and the trait underH0.

The score vector U¼ (U1,., Uk)
0 for b and its covariance matrix are

U ¼
X
i

Xi

�
Yi � Y

�
;V ¼ CovðUÞ ¼ Y

�
1� Y

�X
i

�
Xi � X

��
Xi �X

�0
;

where Y and X are the sample means of Yis and Xis, respectively.
0 �1
The classic score test statistic is TScore ¼ U V U, which, however,

in the current context with a large k, relative to the sample size

n, might be low powered, as its asymptotically equivalent Wald

test and likelihood ratio test. As shown theoretically,19 as the

dimension k increases, the power of the score test might diminish,

tending to the type I error rate a. The most popular univariate sin-

gle SNP-based test, call UminP here, is TUminP ¼ maxk
j¼1U

2
j =Vjj with

Vjj ¼ Var(Uj), which might also be low powered if we have many

small
��bj��s0. Two alternatives, called the Sum and SSU tests, are

TSum ¼ 10U
. ffiffiffiffiffiffiffiffiffiffiffi

10V1
p

¼
Xk
j¼1

Uj

. ffiffiffiffiffiffiffiffiffiffiffi
10V1

p
; TSSU ¼ U 0U ¼

Xk
j¼1

U2
j :

The Sum test is powerful when all or most
��bj��s0 with the same

sign, but not otherwise. As shown by Pan,20 the SSU test can be re-

garded as a variance-component test21,22 and is closely related

to an empirical Bayes test for high-dimensional data23 and a

nonparametric MANOVA test.24 In particular, variance-compo-

nent tests, including kernel machine regression (KMR), have

been advocated for SNP set analysis and empirically shown to be

powerful in many cases.21,22,25 Nevertheless, as shown in Pan

et al.,13,26 because a variance-component test is not adaptive, in

the presence of many non-associated SNPs as anticipated in

the current context of pathway analysis, it might lose power.

Accordingly, a more powerful and adaptive test was proposed as

reviewed next.
Review: The Data-Adaptive aSPU Test
Pan et al.13 proposed a class of sum of powered score (SPU) tests in

a different context for analysis of RVs:

TSPU ¼ TSPUðgÞðUÞ ¼
Xk
j¼1

Ug

j : (Equation 2)

The SPU tests cover the Sum and SSU tests as two special cases

with a corresponding g ¼ 1 and g ¼ 2, respectively. Importantly,

as g / N (and as an even integer), then the SPU test would

approach the UminP test if the variances of the score compo-

nents are a constant (or if their varying variances are ignored,

which might be advantageous in certain cases); the reason is

simple:

kUkg ¼
 Xk

j¼1

jUj j g
!1=g

/kUkN ¼ max
j¼1

k jUj j ; as g/N:

Without covariates, we propose using permutations to obtain

p values. More generally, to adjust for covariates, the parametric
e American Journal of Human Genetics 97, 86–98, July 2, 2015 87



bootstrap (or, alternatively, permuting residuals) can be used for

inference. Specifically, we will first fit a null model under H0,

then simulate a new set of traits Y(b)s from the fitted null model

for b ¼ 1,.,B; we calculate the test statistic T
ðbÞ
SPU based on each

set of simulated Y(b); finally, we calculate the p value as

½PB
b¼1Ið

���TðbÞ
SPU

���RjTSPU jÞ þ 1�=ðBþ 1Þ. We used B ¼ 500 in our simu-

lations for a nominal significance level at 5%.

There is no uniformly most powerful test in multilocus associa-

tion testing; on the other hand, it has been found empirically that

the Sum, SSU, and UminP tests performed well under different

situations. For a given dataset, to adaptively choose the value of

g for the SPU tests, Pan et al.13 propose an adaptive SPU (aSPU)

test that simply combines the results of multiple SPU tests:

suppose that we have some candidate values of g in G, e.g.,

G ¼ {1, 2, 3, ., 8} as used in our later experiments, and suppose

that the p value of the SPU(g) test is pg, then the aSPU test simply

takes the minimum p value:

TaSPU ¼ min
g˛G

pg:

Of course, TaSPU is no longer a genuine p value; we recourse to

the parametric bootstrap to estimate its p value. As before, first,

we simulate B independent copies Y(b) from the null distribution

of Y and obtain the null score vectors U(b) for b ¼ 1,2,.,B. We

then calculate the corresponding SPU test statistics T
ðbÞ
SPUðgÞ and

their p values p
ðbÞ
g ¼ ½Pb1sbIðTðb1Þ

SPUðgÞRT
ðbÞ
SPUðgÞÞ þ 1�=B. Thus, we

have T
ðbÞ
aSPU ¼ ming˛Gp

ðbÞ
g , and the final p value of the aSPU test

PaSPU ¼ ½PB
b¼1IðTðbÞ

aSPU%TaSPUÞ þ 1�=ðBþ 1Þ.
A Data-Adaptive Pathway-Based Test: aSPUpath
Given a pathway S with jSj genes, we partition the score vector

according to the genes as U ¼ ðU 0
1:;.;U 0

jSj:Þ0 with the score subvec-

tor for gene g (with kg SNPs) as Ug: ¼ ðUg1;Ug2;.;Ugkg Þ0 based on

the logistic regression model (or other generalized linear models

or proportional hazards model). The gene-specific SPU statistic

and the pathway-based SPU statistic are, respectively,

SPU
�
g;wg ; g

� ¼ kUg:kg ¼
 Xkg

j¼1

�
wgjUgj

�g�
kg

!1=g

; (Equation 3)

PathSPUðg;gG;w;wG; SÞ ¼
X
g˛S

�
wG;gSPU

�
g;wg ; g

��gG ; (Equation 4)

where two scalars g > 0 and gG > 0, gene-specific weights for SNPs

w ¼ ðw0
1; ::;w

0
jSjÞ0 and wg ¼ ðwg1;.;wgkg Þ0, and gene-specific

weights for genes wG ¼ ðwG;1;.;wG;jSjÞ0 are pre-specified. wg is

used to incorporate prior information on SNPs, e.g., to up-weight

SNPs associated with gene expression, whereaswG can be based on

gene functional annotations or gene expression data to represent

prior likelihoods of their being functional (and associated with the

trait); without prior knowledge or data, or for simplicity, we can

simply use wg ¼ 1 and wG ¼ 1, which are to be used by default un-

less specified otherwise in this paper. Note that SPU (g, wg; g) is

standardized by the gene-specific number of SNPs, kg, so that large

genes will not dominate a pathway analysis (since the genes in a

pathway are the analysis units and are thus treated equally a priori

if no weighting is desired). The intuition behind using gG is like

that for g: in general, a larger gG (or g) is more effective if there

are fewer associated genes (or SNPs) with larger effects in a

pathway (or in a gene), but not otherwise. Two extreme examples
88 The American Journal of Human Genetics 97, 86–98, July 2, 2015
are the following: (1) gG ¼ 1 (or g ¼ 1), treating all genes (or SNPs)

equally, which is most powerful if all the genes (or SNPs) are asso-

ciated with the trait with similar effect sizes and in the same direc-

tion (i.e., all positive or all negative); (2) gG ¼ N (or g ¼ N), using

only the most significant gene (or SNP) as the evidence against the

null hypothesis, which is most powerful if there are only one or

few genes (or SNPs) associated with the trait with a large effect

size. Between the two extremes, other values of gG (or g) might

be more powerful. For example, if only a subset of the genes (or

SNPs) are associated with different effect sizes and different direc-

tions, using gG ¼ 2 (or g¼ 2) might be more powerful, as variance-

component tests (e.g., KMR); on the other hand, if the proportion

of the associated genes (or SNPs) decreases, a larger value, say

gG ¼ 4 (or g ¼ 4), might lead to a more powerful test; often

gG ¼ 8 or 16 (or g ¼ 8 or 16) gives the results similar to using

gG ¼ N (or g ¼ N). We also note that, if the association directions

of (most) associated genes (or SNPs) are in the same direction, us-

ing an odd integer of gG (or g) might be more powerful; otherwise,

using an even integer is more promising. These points have been

empirically verified for RV analysis13 and polygenic testing in

GWASs.26 In practice, because an optimal value of gG (or g) is un-

known, depending on the unknown genetic association patterns,

one has to conduct a grid search over a wide range of possible

values for gG (or g), but searching over toomany will introduce ex-

tra variability and thus lead to power loss. Based on our experience

coupled with the goal of a pathway-based analysis, to take advan-

tage of possibly multiple associated genes (and SNPs), we suggest

trying gG˛f1;2;4;8g (and g˛f1;2;3;.;8g) as shown in the results

below, though this needs to be further studied.

For any given (g,gG), as for SPU(g), we recourse to resampling to

calculate its p value PPathSPUðg;gG ;w;wG ;SÞ. Its power depends on the

choice of (g,gG). A pathway-based aSPU test is defined as

aSPUpathðSÞ ¼ min
g;gG

PPathSPUðg;gG ;w;wG ;SÞ; (Equation 5)

aiming to select from multiple PathSPU tests the most powerful

one. Similar to that for the aSPU test, we propose using a single

layer of the permutation or parametric bootstrap to calculate the

p values.

For the possible situation where multiple genes in a pathway

might contain quite different proportions of causal SNPs, we

might use a more general pathway-based test with a gene-specific

gg for each gene g. Denote g ¼ ðg1;.;gjSjÞ0, we can modify the

tests as

PathSPU2ðg;gG;w;wG; SÞ ¼
X
g˛S

�
wG;gSPU

�
gg ;wg ; g

��gG ;
(Equation 6)

aSPUpath2ðSÞ ¼ min
g;gG

PPathSPU2ðg;gG ;w;wG ;SÞ: (Equation 7)

The corresponding aSPUpath2 test is computationally more

demanding in searching for suitable values of more parameters

in g and gG, which will also introduce more variability to the re-

sults and thus might lead to loss of power. This needs to be studied

further.
Other Modifications
We also considered single-gene-based approaches and those based

on dimension reduction. Because they did not outperform the

proposed aSPUpath, we will present just a summary that might

be interesting.



Table 1. Empirical Type I Error Rates of the Tests for CVs

Set-up aSPUpath GRASS Plink aSPU SSU UminP GATES-Simes HYST

200 indep SNPs .055 .057 .02 .053 .046 .057 .047 .022

1,000 indep SNPs .048 .067 .03 .050 .052 .040 .040 .028

200 corr SNPs .054 .064 .05 .048 .040 .062 .050 .042
As a representative of single gene-based approaches, we consid-

ered applying SPU and aSPU tests to each gene in a pathway, then

using the minimum gene-level p value as a final test statistic for

the pathway. It is easy to see that the pathway-based SPU(N) (after

ignoring the inverse weighting by the number of SNPs and the

possible use of weights) and single gene-based SPU(N) are almost

the same; hence, our proposed aSPUpath test is more adaptive and

thus expected to be more flexible and powerful.

For dimension reduction, as in GRASS, for each genewe replaced

its individual SNP genotype scores by their top few principal com-

ponents (PCs) that accounted for at least 95% of total variation,

and then we applied the pathway-based aSPU test to these PCs.

Perhaps due to the adaptivity of the original aSPUpath test and

possible loss of information by PCs, we did not find improvement

by the use of PCs in our simulations. However, given that PC-

based tests27,28 are viable competitors to variance-component tests

as discussed in Schaid et al.,12 we had an interesting, perhaps sur-

prising, observation: applying the SPU(2) (i.e., SSU) test (that is

equivalent to a variance-component test) to the original geno-

types or the PCs gave almost the same result; an explanation is

offered below.

Suppose that X is the n 3 k matrix of the original genotype

scores. We apply a singular value decomposition: XX
0 ¼ VL2V

0
,

where we assume that the eigen values have been put in descend-

ing order as the diagonal elements ofL2. The first L PCs are the col-

umns of PL ¼ VLLL, where VL is an n 3 L matrix containing the

first L columns of V and LL is an L3 L diagonal matrix containing

the first L eigen values. Nowwe can compare the two SSU statistics

when applied to X and PL, respectively:

SSUðXÞ ¼ UðXÞ0UðXÞ ¼ �Y � Y
�0
XX0�Y � Y

�0
¼ �Y � Y

�0
VLL0V 0�Y � Y

�0
z
�
Y � Y

�0
VLLLL

0
LV

0
L

�
Y � Y

�0 ¼ SSUðPLÞ:

But for other g s 2, we would expect that, in general, SPU(g)

would give different results when applied to the original genotype

scores X and its top PCs PL, respectively.
Simulation Set-ups
We conducted extensive simulation studies to evaluate and

compare the performance of the aSPUpath test with several alter-

native methods. Our general set-ups were similar to those (set-ups

A–D) in Chen et al.14 except that we simulated SNPs, not PCs

(called eigenSNPs therein) of SNPs, to mimic real data. Specifically,

set-up Awas the null case with no causal SNP, while the other three

set-ups contained causal SNPs in 1, 5, and 10 genes, respectively.

We considered one pathway containing 20 genes, each of which

might contain 1–20 SNPs, or 3–100 SNPs; there was at most one

causal SNP inside each gene. To cover possible situations with

more than one causal SNP inside a gene, we added set-ups B0–D0,
in which we randomly selected 1–3 causal SNPs in a gene. Further-

more, to mimic real pathways as in KEGG, we also considered

cases E and F with 40 and 80 genes, respectively, in a pathway
Th
while all other aspects were similar to set-up D0. The SNPs inside

each gene might or might not be correlated whereas the SNPs

from different genes were always independent, and the causal

SNPs might or might not be included in the data.

The simulated genotypes were generated as in Wang and

Elston.29 First, we generated a latent vector Z ¼ (Z1,.,Zk)
0 from

a multivariate Normal distribution with a first-order auto-regres-

sive (AR1) covariance structure: CorrðZi;ZjÞ ¼ rji�jj between any

latent components i and j; r ¼ 0 and r > 0 randomly chosen

from a uniform distributionU(0, 0.8) were used to generate (neigh-

boring) SNPs in linkage equilibrium and in linkage disequilibrium

(LD), respectively. The number of SNPs inside each gene, kg, was

randomly chosen between 1 and 20, or between 3 and 100. Sec-

ond, the latent vector was dichotomized to yield a haplotype

with MAFs each randomly selected uniformly between 0.05 and

0.4 for CVs or between 0.001 and 0.01 for RVs. Third, we com-

bined two independent haplotypes and obtained genotype data:

Xi ¼ (Xi1,.,Xik)
0 for subject i. Fourth, for a non null case, the first

SNP inside the first k1 ¼ 1 or 5 or 10 genes, corresponding to set-

ups B–D, was chosen to be causal with bj ¼ logOR s 0, and all

other bj ¼ 0; we also tried set-ups B0–D0, E, and F with 1–3

randomly chosen causal SNPs. For the null case, all bj ¼ 0.

Fifth, the disease status Yi of subject i was generated from the

logistic regression model (Equation 1). We used b0 ¼ �log(0.05 /

0.95) for a 5% background disease probability; that is,

PrðYi ¼ 1jXi ¼ 0Þ ¼ 0:05. Sixth, as in a case-control study, we

sampled n/2 ¼ 500 cases and n/2 ¼ 500 controls in each dataset.

Throughout the simulations, we fixed the test significance level

at a ¼ 0.05. We used the R package SNPath implementing GRASS

and Plink;14 we implemented other methods in R package aSPU.

Because the program for Plink was quite slow, we ran only 100 in-

dependent replicates for Plink, but 1,000 replicates for others in

each set-up.
Results

Simulation Results for CVs

For comparison, we included the SSU (i.e., SPU(2)) and

UminP tests; the former is equivalent to a global

pathway-based test of Goeman et al.6 as shown in Pan,30

and the latter is the most popular single SNP-based test

in GWASs. The UminP test often performed similarly to

SPU(N) (data not shown).

Type I Error

As shown in Table 1, it appears that each test could control

its type I error rate satisfactorily around or within 0.05.

Comparison of the aSPUpath Test with Other Tests

We first consider set-up B, an extreme scenario that is least

favorable to pathway or SNP set analysis: because there was
e American Journal of Human Genetics 97, 86–98, July 2, 2015 89



A B

C D

Figure 1. Empirical Power for Simulation
Set-up B with a Pathway of 20 Genes
One gene included one causal SNP.
(A and C) Each gene contained 1–20 inde-
pendent (A) or correlated (C) SNPs.
(B) Each gene contained 3–100 indepen-
dent SNPs.
(D) Each gene contained 1–20 correlated
SNPs and the causal SNP was excluded in
analysis.
only one causal SNP, single SNP-based analysis as imple-

mented in the UminP test was expected to be most

powerful, which was confirmed as shown in Figure 1;

GATES-Simes also achieved the highest power as UminP.

Nevertheless, the aSPU and aSPUpath tests performed simi-

larly and were the next most powerful. As shown in

Figure 1A with about 200 independent SNPs, besides

UminP/GATES-Simes and aSPU/aSPUpath, Plink was

most powerful, closely followed by HYST, then by SSU,

and finally GRASS. Figure 1B shows that, with about

1,000 independent SNPs, the aSPU and aSPUpath tests

showed even a more striking advantage over the other

pathway- or SNP set-based tests except GATES-Simes, sug-

gesting the former two’s (and the latter four’s) robustness

(and lack of robustness) to an increasing number of

SNPs. In particular, the performance of SSU deteriorated

with its power close to that of GRASS. Figure 1C shows

that, with about 200 correlated SNPs (with the causal

SNP included), the power trend was similar to that with

200 independent SNPs, though GRASS performed better

than Plink and SSU with smaller ORs. As shown in
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Figure 1D, with about 200 correlated

SNPs with the causal SNP excluded,

again we found GATES-Simes and

UminP, closely followed by the aSPU

and aSPUpath tests, then by HYST,

to be the top performers, while the

other three tests were similarly low

powered.

In set-up C with five causal SNPs

(Figure 2), again the aSPU and

aSPUpath tests performed similarly

and now they had an edge over the

UminP test, especially for smaller

ORs, since the latter uses only the sin-

gle SNP with the strongest signal

while ignoring the signals from other

four causal SNPs. HYST also per-

formed well, especially for large ORs,

and the power of GATES-Simes was

close to or slightly higher than that

of the UminP test. However, differing

from set-up B, we notice that the SSU

test and Plink performed similarly,

shown in Figures 2A and 2C, and

one wasmore powerful than the other
in Figures 2B and 2D, respectively. Figure 2D showed that,

with the five causal SNPs excluded, GRASS could perform

well when the causal effect size was small (and the power

was low).

Now consider a case favoring pathway or SNP set anal-

ysis in set-up D with ten causal SNPs (Figure 3). The

aSPUpath test was the sole winner, having an edge over

the aSPU test; in particular, the two tests could be much

more powerful than the UminP test and GATES-Simes,

although HYST performed well for large effect sizes. As

shown in Figures 3A and 3C, even the SSU test was much

more powerful than the UminP test, confirming the

advantage of combining information across multiple

causal SNPs. On the other hand, in Figure 3B with

about 1,000 SNPs, GATES-Simes, UminP, and Plink were

tied (after aSPUpath, aSPU, and HYST) as the next tier

of the most powerful, followed by SSU, then by GRASS;

the low power of SSU test was due to its non-robustness

to a large number of non-associated SNPs: it did not

down-weight enough the larger number of non-associated

SNPs; in contrast, the two adaptive tests, aSPU and
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Figure 2. Empirical Power for Simulation
Set-up C with a Pathway of 20 Genes
Five genes each included one causal SNP.
(A and C) Each gene contained 1–20 inde-
pendent (A) or correlated (C) SNPs.
(B) Each gene contained 3–100 indepen-
dent SNPs.
(D) Each gene contained 1–20 correlated
SNPs and the causal SNP was excluded in
analysis.
aSPUpath, did not suffer much from the presence of a

large number of non-associated SNPs. GRASS could beat

Plink when the causal effect size was small with (Figures

3A and 3C) or without (Figure 3D) the presence of the

causal SNPs.

In all the above three situations, each gene contained

either no or only one causal SNP, which might be too

restrictive. To cover possible situations with more than

one causal SNP inside a gene, we considered set-ups

B0–D0, in which we randomly selected 1–3 causal SNPs in

1, 5, and 10 genes, respectively (while other genes con-

tained no causal SNPs). The main results remained the

same as before except the following as shown in Figure 4

for set-up D0. First, there was a larger power advantage of

the aSPUpath over the aSPU test for a larger number of

SNPs (Figure 4B). Second, there was improved performance

of GRASS: for example, for small effect sizes, GRASS was

consistently more powerful than Plink, though it was still

outperformed by aSPUpath. It is clear that GATES-Simes

behaved like, albeit a little more powerful than, the UminP

test, and HYST was more powerful than the other two but

less powerful than aSPUpath.
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To mimic KEGG pathways, most of

which contain more than 20 genes

(e.g., Table 4), we considered two set-

ups similar to set-up D0 but with 40

or 80 genes in each pathway and

each gene with 1–20 correlated SNPs.

As shown in Figure 5, aSPUpath re-

mained themost powerful inmost sit-

uations, especially with relatively

small ORs as in typical GWASs

for complex traits, under which

GRASS performed second best. Again,

GATES-Simes performed similarly as

the UminP test, and HYST lost power

as the number of the non-associated

genes in the pathway increased.

In summary, we found that the

aSPUpath and aSPU tests were much

more powerful than pathway-based

GRASS, HYST, and Plink, and the

SSU test for SNP set analysis, across

all the simulation set-ups considered.

In the presence of multiple causal

SNPs or of multiple genes containing
causal SNPs, as anticipated for pathway analysis, they

also outperformed the single SNP-based UminP test, which

often operated like GATES-Simes; between the two

adaptive tests, the aSPUpath test had an edge over the

aSPU test in some situations, especially for a larger number

of non-associated SNPs and for casual SNPs with small

effect sizes.

Comparison of the aSPUpath Test with Its Other

Variants

For set-up B with only one causal SNP, the single-gene-

based aSPU and pathway-based aSPU tests had almost

identical power and were much more powerful than the

PC-based aSPU test. The reason was the following. First,

because there was only one single causal SNP, a single-

gene-based approach would not lose power as compared

to a pathway-based approach aiming to combine informa-

tion across multiple genes; at the same time, a pathway-

based approach in general would not gain either under

this situation. Second, note that the aSPU test could

realize effective SNP selection by adaptively choosing the

tuning parameter g to down-weight non-associated SNPs;
uman Genetics 97, 86–98, July 2, 2015 91
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Figure 3. Empirical Power for Simulation
Set-up D with a Pathway of 20 Genes
Ten genes each included one to three
causal SNPs.
(A and C) Each gene contained 1–20 inde-
pendent (A) or correlated (C) SNPs.
(B) Each gene contained 3–100 indepen-
dent SNPs.
(D) Each gene contained 1–20 correlated
SNPs and the causal SNP was excluded in
analysis.
however, each PC is a linear combination of all the SNPs, a

mixture of both associated and non-associated SNPs, hin-

dering the ability of the PC-based aSPU test to select

SNPs effectively.

For set-up C with five causal SNPs, the pathway-based

aSPU test was more powerful than the gene-based aSPU

test, and the PC-based aSPU test was still the least powerful.

For set-up D with ten causal SNPs, the pathway-based

aSPU test was by far the most powerful. For 200 SNPs,

the PC-based aSPU test was more powerful than the sin-

gle-gene-based aSPU; however, with about 1,000 SNPs,

the single-gene-based aSPU was more powerful than the

PC-based aSPU, presumably due to the fact that each PC

contained too many non-associated SNPs, diluting the

association effects.

As in GRASS, we also tried to first construct gene-specific

SPU test statistics before combining them across a pathway

but did not find it working better than the simple

aSPUpath test discussed here.

In summary, we found that overall our proposed

aSPUpath test performed better than the single-gene-based

aSPU and PC-based aSPU tests.
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Incorporating Prior Knowledge by

Weighting

As discussed earlier, our proposed

method can incorporate biological

knowledge or prior data on the

likelihood of SNPs and genes being

functional through weighting them

differentially. We did a preliminary

study to explore the use of informa-

tive weighting in set-up D with ten

genes, each containing one causal

SNP and with a total of about 200

correlated SNPs. We applied our pro-

posed test with wg ¼ 1, but with

wG ¼ 1 or wG s 1 to assess the effects

of some correctly specified and some

mis-specified gene weights (while

the effects of SNP weighting could

be explored similarly). We generated

wG,g ~ U (0.2, 0.6), a uniform distribu-

tion between 0.2 and 0.6, for genes

containing no causal SNPs, but for

other genes (containing causal SNPs)
wG,g ~ U (0.2 þ d, 0.6 þ d) for several values of d R 0.

Increasing values of d reflected increasing informativeness

of the weights, while d¼ 0 represented completely random

and non-informative weighting. Note that, with the

overlapping weights for the genes containing causal SNPs

and for those without any causal SNP, although the

weights might be informative, strictly speaking they

were mis-specified. As shown in Table 2, it is clear that

our proposed aSPUpath test was most powerful; its

weighted version was robust to mis-specified and

completely random weights (with d ¼ 0) with only small

power loss, while gaining higher power with more infor-

mative weights.

Simulation Results for RVs

With the increasing availability of sequencing data, it has

become more important and urgent to develop and apply

pathway-based analysis of RVs; there have been few such

studies. For this purpose, we did a simulation study to

assess the performance and show the potential of our pro-

posed test for pathway analysis of RVs. To save space,

we present results only for a simulation set-up similar to
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Figure 4. Empirical Power for Simulation
Set-up D0 with a Pathway Containing 20
Genes
Ten genes each included one to three
causal SNPs.
(A and C) Each gene contained 1–20 inde-
pendent (A) or correlated (C) SNPs.
(B) Each gene contained 3–100 indepen-
dent SNPs.
(D) Each gene contained 1–20 correlated
SNPs and the causal SNP was excluded in
analysis.
set-up D: a pathway contained 20 genes, 0 or 10 of which

each contained one causal RV among 1–20 RVs for the null

or non null cases, respectively. The MAFs for the RVs were

randomly drawn between 0.1% and 1% for the control
A B
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samples. We considered both inde-

pendent and correlated RVs within

each gene.

For comparison, we also included

several existing popular or competi-

tive tests. In particular, we included

the Sum (i.e., SPU(1)) as a representa-

tive burden test, the SSU (i.e.,

SPU(2)) test that was shown by Basu

and Pan31 to be competitive and

closely related to several other associ-

ation tests such as C-alpha test32 and

kernel machine regression or SKAT,33

and three adaptive tests that appeared

recently, a kernel-based adaptive

clustering (KBAC) test,34 a p value

weighted sum test (PWSU),35 and

an estimated regression coefficient

(EREC) test.36

As shown in Table 3, all the

methods seem to have type I error

rates around the nominal level

of 0.05.
As shown in Figure 6, the relative performance of the

various tests did not strongly depend on whether there

were within-gene correlations among the RVs. Clearly,

the aSPUpath test was the most powerful, closely followed
Figure 5. Empirical Power for Simulation
Set-ups E and F with a Pathway Contain-
ing 40 and 80 Genes, Respectively
Ten genes each included 1–3 causal SNPs,
and each gene contained 1–20 correlated
SNPs. Set-up E with a pathway of 40 genes
(A) and set-up F with a pathway of 80 genes
(B) are shown.
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Table 2. Empirical Type I Error logOR¼ 0 and Power at logORs 0 of Various Tests for about 200 Correlated SNPs in a 20-Gene Pathway for
Set-up D

logOR

aSPUpath

GRASS Plink aSPU SSU UminP GATES-Simes HYSTwG ¼ 1 d ¼ 0 d ¼ .1 d ¼ .2 d ¼ .3 d ¼ .4

0 .054 .052 .051 .050 .048 .044 .064 .05 .048 .040 .062 .050 .042

0.15 .400 .397 .430 .468 .489 .517 .216 .13 .321 .272 .190 .223 .289

0.2 .701 .656 .713 .747 .769 .791 .360 .27 .607 .492 .353 .443 .597

0.25 .900 .873 .907 .926 .931 .936 .546 .51 .859 .763 .632 .738 .894
by the usual aSPU test, then followed by the SSU test, then

GRASS, SKAT, and EREC tests. Although the SSU and SKAT

are closely related, because SKATover-weights rare variants

with smaller MAFs, which was not a correct assumption in

our simulations, here the SSU test was more powerful than

SKAT. It is worth noting that here GRASS was much more

powerful than Plink, perhaps due to the latter’s ineffective

screening on each individual RV, which contained only

a quite limited association information content with a

low MAF.

The PWST and the single RV-based UminP test per-

formed similarly. The KBAC had lowest power. Note that

here all the causal RVs had an equal association strength

(and direction), which was supposed to be ideal for the

Sum test (or other burden tests); however, due to the pres-

ence of many non-associated RVs, the Sum test and several

other adaptive tests did not perform well due to their non-

or not-so-good selection or down-weighting of the many

non-associated RVs, as discussed in Pan et al.13

Example

We applied the proposed aSPUpath test, as well as the

GRASS test, to the Wellcome Trust Case Control Con-

sortium (WTCCC) GWAS data for Crohn disease (CD

[MIM: 266600]).37 CD, a type of inflammatory bowel dis-

ease, is also considered an autoimmune disease with a

strong genetic component.3 The WTCCC GWAS dataset

contains 2,000 CD-affected case subjects and 3,000 control

subjects with a total of 500,568 SNPs. Following the

WTCCC’s quality control (QC) recommendations, we

removed subjects and SNPs that did not pass the QC

criteria, resulting in 469,612 SNPs in 1,748 case subjects

and 2,938 control subjects. We further restricted the

pathway analysis to SNPs with MAF of at least 1%. We

retrieved a total of 214 human biological pathways from

the KEGG database.1 Because a too-small pathway can

give results not too different from a gene-based analysis,

whereas the annotated function of a large pathway is likely

to be non-specific, many authors restricted their analyses
Table 3. Empirical Type I Error Rates of the Tests for RVs

Set-up aSPUpath GRASS aSPU Sum

200 indep SNPs .059 .058 .060 .048

200 corr SNPs .058 .065 .047 .051
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to pathways of certain sizes. For example, Chen et al.14

and Wang et al.3 considered pathways with at least 10

genes, whereas Gui et al.9 included only pathways contain-

ing between 10 and 300 genes. Following the previous au-

thors, to facilitate interpretation of the results, we excluded

too-small (<10 genes) and too-big (>500 genes) pathways,

which resulted in 197 pathways. We obtained the genomic

coordinates of SNPs and genes according to human refer-

ence genome hg19 and assigned a SNP to a gene if it is

located within 20,000 base pairs (20 kb) upstream or down-

stream of the gene to include SNPs in regulatory regions.

A total of 64,557 SNPs were mapped to the 197 pathways

including 4,572 unique genes. The median number of

genes in a pathway was 47 with the first and third quartiles

being 27 and 76, and themedian number of SNPs in a gene

was 8 with the first and third quartiles being 4 and 17,

respectively. We employed a stage-wise permutation

strategy for both aSPUpath and GRASS tests: we first per-

formed 5,000 permutations for all pathways and then

increased to 100,000 permutations for those pathways

with p values < 0.01 in the first stage. We set the signifi-

cance threshold at 0.00025 to control the family-wise error

rate (FWER) at 0.05 based on the Bonferroni correction for

197 pathways.

Figure 7 shows the histograms of the p values across

the 197 KEGG pathways by the new method and GRASS;

their distributions were similar, though GRASS gave a

larger number of more significant p values. Overall, the

two methods gave similar and complementary results:

although many common pathways were identified to

be significant by both methods, each also detected

some unique pathways. For example, at the significance

threshold of 0.00025, aSPUpath and GRASS identified 18

and 35 significant pathways, respectively, among which

11 were common. The Spearman’s rank correlation coeffi-

cient between the p values of the two methods was 0.65.

Table 4 shows 24 KEGG pathways with p values less than

0.00001 by either method, i.e., none of the permuted test

statistics exceeded the observed one based on 100,000
SSU UminP SKAT KBAC PWST EREC

.051 .068 .050 .054 .053 .048

.060 .045 .058 .048 .054 .052
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Figure 6. Empirical Power for RVs in
Simulation Set-up D2with a Pathway Con-
taining 20 Genes
Ten genes each included one causal RV.
Each gene contained 1–20 independent
(A) or correlated (B) RVs.
permutations. Interestingly, five pathways that have been

confirmed to be associated with susceptibility to CD by

meta-analysis and replication studies3,38,39 are all among

the 24 pathways. Three of them had p values less than

0.00001 by both methods. Of note, the JAK-STAT signaling

pathway (hsa04630) has been identified in quite a few pre-

vious pathway analyses.9,10,40 This pathway has 145 genes,

including IL23R (MIM: 607562) with a cluster of genome-

wide significant SNPs in the WTCCC GWAS of CD, and

nine additional genes, for example, JAK2 (MIM: 147796)

and STAT3 (MIM: 102582), which were found to be associ-

ated with CD in a large-scale meta-analysis.38 Therefore, it

is relatively easy to be identified by several pathway

analysis methods.3,9 On the other hand, two positive

control pathways, namely, NOD-like receptor signaling

pathway (hsa04621) and Chemokine signaling pathway

(hsa04062), had p values < 0.00001 only by aSPUpath,

but were not significant by GRASS (p values > 0.00025).

It is noteworthy that SNPs in NOD2 (MIM: 605956) in

the NOD-like receptor signaling pathway were the first

to be identified to be associated with CD and confer the
A B C

Figure 7. Distributions of the p Values from aSPUpath and GRASS and Their Comparison
Shown are aSPUpath (A) and GRASS (B) and comparison (C).
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highest risk for CD development

among all CD-susceptibility SNPs

discovered thus far.39,41 The NOD-

like receptor signaling pathway in-

cludes not only NOD2, but also

several other CD-associated genes,

including TNF (MIM: 191160), CCL2

(MIM: 158105), and CCL7 (MIM:

158106), making it one of the most-

well-understood pathways underly-
ing CD susceptibility.42 The data application here demon-

strates that our proposed aSPUpath test is a competitive

and complementary approach to the GRASS test.

For comparison, we also ran GATES-Simes and HYST,

yielding 5 and 4 pathways with p values< 0.00001, respec-

tively, all but one of which had a p value < 0.00001 by

either aSPUpath or GRASS. The only exception was

pathway hsa04622 ‘‘RIG-I-like receptor signaling;’’ the

four methods, aSPUpath, GRASS, GATES-Simes, and

HYST, gave p values of 0.00004, 0.0318, <0.00001, and

0.3050, respectively.
Discussion

We have proposed a powerful adaptive test for pathway

analysis of genetic SNP data as arising in GWASs.3,4,43

Because any pathway analysis involves multiple genes,

each containing multiple SNPs, it is desirable to apply a

test that can maintain high power with a large number

of non-associated SNPs (or genes) and multiple only
in the Log10 Scale for the WTCCC CD Data
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Table 4. Results of the WTCCC CD GWAS Data Application: KEGG Pathways with p Values < 0.00001 by Any of aSPUpath, GRASS, GATES-
Simes, and HYST

KEGG ID Pathway Names No. of Genes No. of SNPs

p Values

aSPUpath GRASS GATES-Simes HYST

hsa04630 Jak-STAT signaling pathway* 145 1,410 <0.00001 <0.00001 <0.00001 <0.00001

hsa04060 cytokine-cytokine receptor interaction* 247 2,506 <0.00001 <0.00001 <0.00001 .00001

hsa04660 T cell receptor signaling pathway* 105 1,373 <0.00001 <0.00001 .00081 .00021

hsa04310 Wnt signaling pathway 143 2,087 <0.00001 <0.00001 .00089 .00238

hsa05310 asthma 27 271 <0.00001 <0.00001 .00071 .00002

hsa05330 allograft rejection 34 466 <0.00001 <0.00001 .00089 <0.00001

hsa05414 dilated cardiomyopathy (DCM) 89 2,605 <0.00001 <0.00001 .00382 .02188

hsa05416 viral myocarditis 67 1,263 <0.00001 <0.00001 .00148 <0.00001

hsa04972 pancreatic secretion 93 2,187 <0.00001 .00003 .00072 .00211

hsa04621 NOD-like receptor signaling pathway* 57 502 <0.00001 .00542 <0.00001 .01012

hsa04062 chemokine signaling pathway* 174 2,714 <0.00001 .00061 .00131 .00119

hsa04810 regulation of actin cytoskeleton 201 3,347 <0.00001 .00108 .00156 .00962

hsa05131 shigellosis 60 784 <0.00001 .00434 <0.00001 .00159

hsa00230 purine metabolism 154 2,810 .00759 <0.00001 .05376 .02156

hsa04144 endocytosis 180 2,575 .00190 <0.00001 .00139 .01397

hsa04145 phagosome 136 1,469 .00101 <0.00001 .00314 .00272

hsa04270 vascular smooth muscle contraction 113 2,887 .00025 <0.00001 .00086 .00566

hsa04350 TGF-beta signaling pathway 82 831 .00080 <0.00001 .00060 .01381

hsa04514 cell adhesion molecules (CAMs) 122 3,312 .00120 <0.00001 .00311 .00043

hsa04612 antigen processing and presentation 63 543 .00129 <0.00001 .00146 .00016

hsa04650 natural killer cell mediated cytotoxicity 124 1,464 .00199 <0.00001 .02586 .00336

hsa04672 intestinal immune network for IgA production 45 393 .00073 <0.00001 .00105 .00009

hsa04940 type I diabetes mellitus 39 714 .00031 <0.00001 .00102 <0.00001

hsa05332 graft-versus-host disease 33 440 .00036 <0.00001 .00086 .00001

hsa04622 RIG-I-like receptor signaling pathway 65 474 .00004 .0318 <0.00001 .30502

Asterisks (*) indicate positive control pathways.
weakly associated SNPs (or genes), an ideal case for our pro-

posed test. On the other hand, because the genes in a

pathway can contain different numbers of SNPs, to avoid

undue influence from a large (or small) gene, we modify

the tests to take account of varying gene lengths. Our pro-

posed test introduces two parameters (g and gG) to achieve

the objective. For example, if there are only few genes,

each containing many associated SNPs (e.g., due to LD),

a large value of g and a small value of gG would yield a

more powerful test; because the truth is unknown, we

use data to adaptively estimate their optimal values. The

adaptivity of the proposed test at the gene level and/or at

the SNP level is missing from many existing tests for

pathway or SNP set analysis, such as the SSU and SKAT

tests. As supported by our numerical examples, the pro-

posed test can gain power in many situations and serve

as a tool complementary to existing methods like GRASS.
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Our proposed test is general and applicable to CVs or

RVs. It can be modified, e.g., via suitable weighting on

SNPs, for analysis of both CVs and RVs, as shown for the

SSU test in Basu and Pan.31 In addition, we can also intro-

duce some weights at the gene and SNP levels to incorpo-

rate biological knowledge onwhich genes or SNPs aremore

likely to be causal. We have focused on testing on a single

pathway; an alternative is to take account of possible over-

lapping or hierarchical structures of some pathways as

discussed in Schaid et al.12 These topics warrant future

investigation.

Finally, we note that our proposed approach is in the

category of ‘‘self-contained tests,’’ not ‘‘competitive tests,’’

because the null hypothesis to be tested here fits the

former better than the latter: we are interested in detecting

any pathways with any SNPs associated with a trait, not in

detecting ones that are over-enriched with associated



SNPs. Furthermore, as argued by Goeman and Buhl-

mann,44 the same test on the former is necessarily more

powerful than on the latter. Following Zhou et al.,45 we

can extend our aSPUpath to competitive testing. Our

goal also differs from that of Newton et al.,46 which goes

beyond only identifying significant pathways, but also

aims to uncover the common theme shared among the

identified significant pathways.
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