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ABSTRACT With the advance of sequencing technologies, it has become a routine practice to test for
association between a quantitative trait and a set of rare variants (RVs). While a number of RV association
tests have been proposed, there is a dearth of studies on the robustness of RV association testing for
nonnormal distributed traits, e.g., due to skewness, which is ubiquitous in cohort studies. By extensive
simulations, we demonstrate that commonly used RV tests, including sequence kernel association test
(SKAT) and optimal unified SKAT (SKAT-O), are not robust to heavy-tailed or right-skewed trait distributions
with inflated type I error rates; in contrast, the adaptive sum of powered score (aSPU) test is much more
robust. Here we further propose a robust version of the aSPU test, called aSPUr. We conduct extensive
simulations to evaluate the power of the tests, finding that for a larger number of RVs, aSPU is often more
powerful than SKAT and SKAT-O, owing to its high data-adaptivity. We also compare different tests by
conducting association analysis of triglyceride levels using the NHLBI ESP whole-exome sequencing data.
The QQ plots for SKAT and SKAT-O were severely inflated (l = 1.89 and 1.78, respectively), while those
for aSPU and aSPUr behaved normally. Due to its relatively high robustness to outliers and high power of
the aSPU test, we recommend its use complementary to SKAT and SKAT-O. If there is evidence of inflated
type I error rate from the aSPU test, we would recommend the use of the more robust, but less powerful,
aSPUr test.
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Thanks to the rapidly decreasing cost of the next-generation se-
quencing (NGS) technology, whole-exome sequencing (WES) and
whole-genome sequencing (WGS) have been performed in many
deeply phenotyped prospective cohort studies and electronic health
record (EHR)-based cohorts of tens of thousands of individuals.
Completed and ongoing large-scale WES and WGS sequencing

efforts include the National Heart, Lung, and Blood Institute
(NHLBI) Exome Sequencing Project (ESP) (Crosby et al. 2014),
Trans-Omics for Precision Medicine (TOPMed) Program (Abecasis
et al. 2015), the NHGRI Genome Sequencing Program (GSP),
the UK10K project (UK10K Consortium 2015), and the Geisinger
MyCode project (Mukherjee et al. 2015), to name a few. This big
wave of sequencing data provides researchers with unprece-
dented opportunities to investigate low frequency [minor allele
frequency (MAF) between 1 and 5%] and rare (MAF , 1%) single
nucleotide variants (SNVs) in association with complex pheno-
types and diseases (Yi et al. 2011; Schaid et al. 2013; Lee et al.
2014). An example of the initial successes is the discovery of
rare functional variants in APOC3 associated with lower plasma
triglyceride levels and a reduced risk of coronary heart disease
(Crosby et al. 2014).

Many phenotypes such as triglyceride and fasting glucose col-
lected in population-based cohort studies are quantitative and may
not follow a normal distribution, as explicitly or implicitly assumed
in most existing statistical methods for rare variant (RV)-based
association testing (Bansal et al. 2010; Fan et al. 2015). However,
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there is a dearth of literature on the robustness of RV tests to the
nonnormality of the observed traits, e.g., due to skewness, which is
expected to be ubiquitous in cohort studies. In particular, we find
that commonly used RV tests, including the sequence kernel asso-
ciation test (SKAT) (Wu et al. 2011) and SKAT-O test (Lee et al.
2012), are very sensitive to quantitative trait’s deviation from nor-
mality and can have severely inflated association p-values. For
example, when applied to the ESP WES data in association with
plasma triglyceride levels, as described in detail later on, SKAT and
SKAT-O had globally inflated quantile–quantile (QQ) plots with
genomic control (GC; Devlin and Roeder 1999) l ¼ 1:89  and 1:78;
respectively. In addition to the case study of RV-triglyceride asso-
ciation testing, here we have conducted extensive simulation studies
to investigate the performance of several commonly used RV tests,
including the burden test (Li and Leal 2008), SKAT, and SKAT-O, as
well as our recently proposed adaptive sum of powered score (aSPU)
test (Pan et al. 2014), in the presence of nonnormal quantitative
traits. We have also studied and compared some commonly used
ad hoc strategies to deal with nonnormal traits, such as natural
logarithm transformation, inverse normal transformation,Winsorizing,
trimming, and minor allele count (MAC) thresholding. Although we
find that the aSPU test is more robust than SKAT and SKAT-O, it
can sometimes suffer from inflated type I error rates in the presence
of a few contaminated observations. In response, we further propose
a robust version of the aSPU test, called aSPUr.While the traditional
variant-by-variant association test for common SNVs (MAF . 5%)
has been shown to be robust to nonnormal distributed traits (Cao
et al. 2014), here we demonstrate that RV association testing
can be very sensitive to quantitative trait’s subtle deviation from
normality. Based on type I error control and statistical power con-
siderations, we further provide practitioners with some general
guidelines and a new robust test to deal with nonnormal quantita-
tive traits.

METHODS

Review of existing RV tests
We first review our recently proposed class of sum of powered score
(SPU) tests and their adaptive version called aSPU test (Pan et al. 2014).
The former include the burden and SKAT tests as special cases. We
then introduce a new robust version of the SPU and aSPU tests,
denoted as SPUr and aSPUr. Consider a linear model for a quantitative
trait,

Yi ¼ b0 þ
Xk
j¼1

Xijbj þ ei;

where Yi is the trait for subject i, Xij is the MAC (coded as 0, 1, or 2) of
SNV j for subject I, and the error term ei is assumed to have a
distribution with mean 0 and a constant variance s2: The main in-
terest is to testH0 : b ¼ ðb1; . . . ;bkÞ9 ¼ 0; i.e., none of the k variants
in a set is associated with the phenotype. The score vector is

U ¼
Xn
i¼1

ðYi 2YÞXi;

and its covariance matrix is V ¼ CovðUÞ ¼ s2Pn
i¼1ðXi 2XÞðXi2XÞ9;

which can be consistently estimated by V̂ ¼Pn
i¼1ðYi2YÞ2

ðXi 2XÞðXi2XÞ9: In fact, for any generalized linear models (GLMs)
with a canonical link function, the score vector U remains the same
as the above.

Pan et al. (2014) proposed a class of SPU tests, for an integer g$ 1;

TSPU ¼ TSPUðgÞðUÞ ¼
Xk
j¼1

Ug
j :

Note that when g ¼ 1 and g ¼ 2; the SPU test is equivalent to the
burden test and the SKAT test under the linear kernel with equal RV
weighting, respectively. Importantly, as g increases, the SPU(g) test
puts more weights on the larger components of U while gradually
ignoring the remaining components. In particular, we have

TSPUðgÞ } kUkg ¼
 Xk

j¼1

��Uj
��g!1=g

/kUkN ¼ max
j¼1

k ��Uj
��; as  g/N:

As will be shown, since the SPU tests are based on resampling methods
to calculate their p-values, they are invariant to monotone transforma-
tions, such as ð:Þ1=g: That is, we can define TSPUðNÞ ¼ maxkj¼1

��Uj

��;
which uses only the largest component of jUj and does not aggregate
information from other RVs. More generally, as we increase the value
of g, we put higher and higher weights on the larger components of U,
effectively realizing RV selection. On the other hand, an even integer of
g automatically eliminates the effects of different signs ofUj’s, avoiding
power loss of the burden test in the presence of different association direc-
tions. However, an odd integer of g might be more suitable, as in the SPU
(1) or burden test, when the associations are all in the same direction.

Without covariates, Pan et al. (2014) proposed using permutations
to obtain p-values for the SPU tests. With covariates, the parametric
bootstrap (or, alternatively, permuting residuals) can be performed.
Briefly, we fit a null model under H0 and obtain the residuals, then
we randomly permute the residuals and add them to the estimated
means of the traits from the null model, obtaining a new set of null
traits Y ðbÞ: We use the null traits Y ðbÞ to obtain a null statistic
TðbÞ
SPU ¼ TSPUðY ðbÞÞ:We repeat the above process B times, and calculate

the p-value as
hPB

b¼1I
����TðbÞ

SPU

���$ jTSPU j
�
þ 1
i.

ðBþ 1Þ:
Since the power of an SPU(g) test depends on the choice of g while

the optimal choice of g depends on the unknown true association
pattern of the RVs to be tested, it would be desirable to data-adaptively
choose the value of g. For this purpose, Pan et al. (2014) proposed an
adaptive SPU (aSPU) test to combine information across multiple SPU
tests with various values of g. Suppose that we have some candidate
values of g in G; e.g., G ¼ f1; 2; 3; . . . ; 8;Ng as used in our later sim-
ulation experiments, and suppose that the p-value of the SPUðgÞ test is
PSPUðgÞ; then our combining procedure is to take the minimum p-value:

TaSPU ¼ min
g2G

PSPUðgÞ:

Of course, TaSPU is no longer a genuine p-value; as for the SPU tests,
we recourse to a resampling method to estimate its p-value. As before,
first we simulate B independent copies of the null traits YðbÞ by the
parametric bootstrap for b ¼ 1; 2; . . . ;B: We then calculate the cor-
responding SPU test statistics TðbÞ

SPUðgÞ and their p-values

pðbÞg ¼
" P

b1 6¼b
I
�
Tðb1Þ
SPUðgÞ $TðbÞ

SPUðgÞ
�
þ 1

#�
B: Thus, we have

TðbÞ
aSPU ¼ ming2GpðbÞg ; and the final p-value of the aSPU test is

PaSPU ¼
hPB

b¼1I
�
TðbÞ
aSPU #TaSPU

�
þ 1
i.

ðBþ 1Þ: We used

B ¼ 1000 in our simulation experiments. Note that, we can first use
a smaller B ¼ 1000 or so to scan a genome, then use a larger B to test
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on a few genes or regions that pass the significance criterion (e.g.,
p-value , 5=B) in the first step.

New tests: robust SPU and aSPU tests
Apotentialproblemwith the aboveGaussian likelihood-basedapproach
is its nonrobustness to outliers, which can be caused by non-Gaussian
errors ei or contaminated traits Yi: Consider a situation where we
observe a singleton for RV j; that is, say X1j ¼ 1 and all other Xij ¼ 0
for i. 1: Then the jth component of the score vector is Uj ¼ Y1 2Y ;
which will be largely influenced by a single observation Y1: As to be
shown later, in such a situation, if Y1 is contaminated or measured with
error, then we may have inflated type I errors. To overcome the prob-
lem, we propose using a robust regression method. Rather than
using the Gaussian-based likelihood, we propose using the Huber
loss with the corresponding score vector UH ¼Pn

i¼1UH;i: with
Xi: ¼ ðXi1; . . . ;XikÞ9 and

UH;i: ¼
�
Xi:ðYi 2YÞ=ŝ if   jYi 2Yj=ŝ# c;

cXi:signðYi 2YÞ otherwise;

where c ¼ 1:345 is chosen to maintain a high efficiency for a
normal error (i.e., trait) distribution, and ŝ is an estimate of
s (Jureckova and Picek 2006). Under H0 we can use the
median absolute deviation (MAD) as a robust estimate of s.
ŝ ¼ Median1# i# njYi 2Median1# i9# nYi9j=0:6745: It is clear that
the truncation of jYi 2Y j=ŝ at a constant c eliminates or alleviates
the undue influence of outlying Yi’s.

We define a robust SPU (SPUr) test for a given g$ 1 as

TSPUrðgÞ ¼
Xk
j¼1

Ug
H; j:

With various values of g$ 1; we obtain a class of the SPUr tests.
Accordingly we define an adaptive robust SPU (aSPUr) test as

TaSPUr ¼ min
g2G

PSPUrðgÞ;

where PSPUrðgÞ is the p-value of the SPUr(g) test, and we use
G ¼ f1; 2; . . . ; 8;Ng as before. The p-values of the SPUr and aSPUr
tests are obtained in the same way as for the SPU and aSPU tests
described earlier.

Alternatively, based on some initial estimate b̂
0

(e.g.,
the least squares or least absolute deviation estimate) of

b, we define residuals ei
�
b̂
0
�
¼ Yi 2Xib̂

0
and then use

ŝ ¼ Median1# i# njei
�
b̂
0
�
2Median1# i9# nei9

�
b̂
0
����; which might

give higher power than using the other estimate of s (which does
not take account of possible effects of RVs). However, it is difficult to

obtain reliable estimates of b̂
0
for RVs, which in fact motivated the

development of the burden tests and other methods. This is a topic to
be explored in the future.

Comparison with Winsorizing and trimming
Twosimple andstraightforwardways tohandleoutliers areWinsorizing
and trimming. For a specified small a1; such as a1 ¼ 0:05 or
0.025, define the 100·a1-percentile and 100·a1-percentile of
fY1;Y2; . . . ;Yng as ya1 and y12a1 respectively. In Winsorizing, any Yi

satisfying Yi , ya1 is truncated at ya1; and any Yi . y12a1 is truncated
at y12a1: In trimming, any observation i is removed from the dataset if
Yi , ya1 or Yi . y12a1:

Winsorizing is to some degree like using the Huber loss function in
truncating outlying trait values. However there are two important
differences. First, the choice of the threshold a1 is arbitrary, which
may be too small or too large, depending on the unknown proportion
of the outliers. Second, more importantly, in Winsorizing whether a
trait value Yi is judged to be an outlier or not is completely based on its
absolute value jYij without accounting for any covariates; if instead we
Winsorize residuals jYi 2Ziĝj; it will be more similar to using the
Huber loss. As will be shown, ignoring covariate effects may lead to
severely inflated type I errors or power loss.

In addition to the above two disadvantages shared with Winsorizing,
trimming is too extreme in eliminating the observations judged to be, but in
truthmay ormay not be, outliers, which often leads to severe loss of power.

Software and data availability
The aSPUr test has been implemented in R package “aSPU” avail-
able on the Comprehensive R Archive Network (CRAN): https://
cran.r-project.org/web/packages/aSPU/. The NHLBI ESP data are
accessible from the National Center for Biotechnology Information
(NCBI) dbGaP with accession numbers phs000398, phs000400,
phs000401, and phs000281.

RESULTS

Simulation set-ups
Toevaluateandcompare theperformanceof various tests,we conducted
extensive simulation studies under different trait distributions. The
genotype data were simulated following Wang and Elston (2007) and
Basu and Pan (2011). Specifically, a latent variable L1 ¼ ðL11; . . . ; L1kÞ9
was simulated from a k-dimensional multivariate normal distribution
Nð0;VÞ with V as an AR-1(r) correlation structure: Vj;l ¼ rjj2lj for
any 1# j; l# k: Then we randomly drew from a uniform distribution
Uð0:001; 0:005Þ k MAFs between 0.1 and 0.5%, and accordingly di-
chotomized Li to yield a haplotype. We similarly simulated another
latent variable and the corresponding haplotype.We combined the two
haplotypes to form the genotype Xi for subject i. This process was
repeated n ¼ 400 times to generate genotypes for n ¼ 400 subjects.
We used r ¼ 0 and r ¼ 0:8 to generate independent and correlated
SNVs (in linkage equilibrium and in linkage disequilibrium) respec-
tively. Note that we only used unphased genotypes, not haplotypes, in
simulations.

A trait Yi was simulated from linear regression model Yi ¼
Xibþ Zigþ ei with the following error distribution. First, ei was
independent and identically distributed (iid) from � Nð0; 1Þ: Second,
ei was iid from � LNð0;seÞ; a Log-normal distribution with
mean 0 and SD se on the log scale. Third, ei was iid from � td; a
t-distribution with degrees of freedom d ¼ 1 or 3. Fourth, ei was iid
from a contaminated Nð0; 1Þ: a single observation i0 with

P
jXi0 j. 0

was randomly chosen and its trait had an additive error e � Nð0;seÞ
with se ¼ 5 or 10.

To evaluate the empirical type I error (null cases), we hadb ¼ 0: For
empirical power (nonnull cases), we randomly chose eight SNVs from
k SNVs as causal ones with nonzero bj’s while other SNVs having
their bj ¼ 0: For causal SNVs, we used two sets of coefficients:
b ¼ ð21:2;21:2;20:8;20:8; 0:8; 1; 1; 1Þ9 (power set-up I) and
b ¼ ð0:7; 0:7; 0:7; 1; 1; 1; 1:2; 1:2Þ9 (power set-up II), which favors
SKAT and the burden test, respectively. In the absence of other cova-
riates, Zi was just a constant 1 for the intercept term; otherwise, we
randomly generated two independent covariates from Nð0; 1Þ with
g ¼ ð1;21Þ9: To investigate the robustness of a method to the number
of SNVs, we increased k from 8 to 256.
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Simulation results
Table 1 shows the empirical type I error rates for various tests with-
out any transformation. Under Nð0; 1Þ error distribution, all tests
controlled the type I error rates satisfactorily at the nominal level
a ¼ 0:05: Under heavy-tailed (t3 and t1) and skewed (LNð0; 1Þ and
LNð0; 2Þ) error distributions, SKAT and SKAT-O had severely inflated
type I error rates, while aSPU and aSPUr controlled their type I error
rates satisfactorily. With even just 1 (out of 400) quantitative trait
contaminated, all the tests except aSPUr could not control the type I
error rates well, though the aSPU test (along with the SPU tests) per-
formed much better than SKAT and SKAT-O. The same conclusions
held with correlated SNVs and with or without covariates (Supplemen-
tal Material, Table S1, Table S2, and Table S3). For nonnormal error
distributions subject to Winsorizing or trimming, the results were de-
pendent on the choice of the cut-off a1 as shown in Table S4 and Table
S5. For example, when the error distribution was t1 with no covariates,
SKAT and SKAT-O after Winsorizing at a1 ¼ 0:05 could maintain a
correct type I error rate, but not at a1 ¼ 0:025: For an error distribu-
tion of LNð0; 2Þ; SKAT and SKAT-O could not control the type I error
rates for either a1 ¼ 0:05 or a1 ¼ 0:025 (Table S4). With covariates,
the performance became worse, especially with trimming; neither
Winsorizing nor trimming could control type I error rates at either
a1 ¼ 0:05 or a1 ¼ 0:025 (Table S5).

For empirical power comparison, under Nð0; 1Þ error distribution
the aSPU test performed similarly to SKAT or SKAT-O with a smaller
number of SNVs; however, as the number of SNVs increased, the aSPU
test became more powerful (Table S6). As reported before (Pan et al.
2014; 2015a,b), with increasing number of SNVs an SPU(g) test with a
larger g. 0 value tended to be more powerful; in particular, SPU(4)
could be much more powerful than SPU(2), e.g., when there were
128 or more SNVs (Table S6). Of note, SPU(2) is equivalent to SKAT
with a linear kernel which was optimal here and was used throughout
(Pan 2009; Pan 2011). On the other hand, the aSPUr was conservative,
especially for causal SNVs with larger effect sizes (Cases III and IV in
Table S6), in which it was hard to distinguish a genuinely large effect
size of a RV from a contaminated trait value. In robust statistics, one
would like to use some initial estimator to estimate and thus take
account of large effects, which however was almost impossible in the
current context for RVs: with small MAFs, it is almost impossible to
obtain reliable estimates for RVs. The same conclusions held with
correlated SNVs (Table S7). For Winsorizing or trimming, there was
always a dramatic loss of power with trimming, while Winsorizing
performed well for a smaller number of SNVs. But its performance
deteriorated as the number of SNVs increased; in particular, again
its performance depended on the use of the a1 level (Table S8 and
Table S9).

We further investigated the effects of natural logarithm (Ln) and
rank-based inverse normal (INV) transformations on the type I error
rate and power.We considered the skewed LNð0; 1Þ and heavy-tailed
t3 error distributions. With the two covariates in the simulated data,
we first regressed them out in a linear model underH0; then used the
residuals or their transformations to test their association with a set
of SNVs.

Figure 1 shows the type I error rates and powers for a skewed error
distribution LNð0; 1Þ: First, without transformation both SKAT and
SKAT-O gave severely inflated type I error rates, while aSPU and aSPUr
controlled their type I error rates satisfactorily; with Ln transformation,
all tests performed well, although the type I error rates of SKAT and
SKAT-O might be slightly inflated; with INV transformation, all tests
controlled the type I error rates satisfactorily. Second, under power

set-up I which favored SKAT and SPU(2) because the association
directions of the eight causal SNVs were different, without transforma-
tion although both aSPU and aSPUr could control the type I error rates,
they lost power dramatically as compared to those with transformed
traits; between the two, aSPUr was more powerful. On the other hand,
with Ln transformation SKAT was most powerful, followed by
SKAT-O, then aSPU, and finally aSPUr, though the power difference
became smaller as the number of SNVs to be tested increased; with
INV transformation, SKAT was most powerful for smaller numbers
of SNVs while aSPU was more powerful for larger numbers of SNVs;
for unknown reasons, aSPUr did not perform well. Third, under
power set-up II which favored burden tests because the association
directions of the eight causal SNVs were the same, without trans-
formation although both aSPU and aSPUr could control the type I
error rates, they lost power dramatically as compared to those
with transformed traits; between the two, aSPU was more powerful.
With Ln transformation, SKAT-O and aSPU were most powerful,
followed by SKAT or aSPUr, though the power difference was not
dramatic; with INV transformation, aSPUr was consistently best,
followed by SKAT-O and aSPU (for which the former had an edge
for a smaller number of SNVs while the latter had otherwise), finally
by SKAT.

Figure 2 shows the type I error rates and powers for a heavy-tailed
(and nonskewed) error distribution t3: First, without transformation
both SKAT and SKAT-O gave severely inflated type I error rates, while
aSPU and aSPUr controlled their type I error rates satisfactorily. Al-
though no reason to use a Ln transformation, to show possible effects of
using an incorrect transformation, we also presented results based
on the Ln transformation: again both aSPU and aSPUr were robust
with well-controlled type I error rates, while SKAT and SKAT-O had
severely inflated ones; with INV transformation, all tests were sat-
isfactory. On the other hand, under power set-up I, with no or Ln
transformation, although both aSPU and aSPUr could control the
type I error rates, aSPU lost power dramatically while aSPUr did not
as compared to those with transformed traits; between the two,
aSPUr was much more powerful. We showed the results for SKAT
and SKAT-O, even though they had severely inflated type I error
rates. With INV transformation, SKAT and aSPUr were the winners,
though SKAT was slightly more powerful for smaller numbers of
SNVs while aSPUr was more powerful for larger numbers of SNVs,
closely followed by aSPU, then SKAT-O. Finally, under power set-up
II, with no or Ln transformation, although both aSPU and aSPUr
could control the type I error rates, aSPU lost power dramatically
while aSPUr did not as compared to those with transformed traits;
between the two, aSPUr was more powerful; with INV transforma-
tion, aSPUr was best, closely followed by aSPU, then SKAT-O, and
then SKAT.

Data example: application to the NHLBI ESP
triglyceride phenotype
Tofurtherdemonstrate theperformanceofvariousRVtests ina realdata
example, we analyzed the WES data in association with plasma triglyc-
eride level in 1731 individuals of European ancestry who were sequenced
in the NHLBI ESP project. The study subjects were selected from the
following population-based cohorts: Atherosclerosis Risk in Commu-
nities, the Cardiovascular Heart Study, the Framingham Heart Study,
and theWomens Health Initiative; see Crosby et al. (2014) for details.
We performed gene-based RV association tests, including SKAT,
SKAT-O, T1 burden test, aSPU, and aSPUr, on untransformed, natural
logarithm transformed, and rank-based inverse normal transformed
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triglyceride levels, denoted as TG, Ln(TG), and INV(TG), respectively.
Following Crosby et al. (2014), we included nonsynonymous (nonsense
and missense) and splice-site variants of MAF # 1% within each gene
and excluded genes with cumulative MACs ,5, resulting in 13,978
genes. The genome-wide significance threshold was set at 3:6 · 1026

based on the Bonferroni procedure. As in Crosby et al. (2014), we
performed natural logarithm transformation on the raw triglyceride
level and adjusted for covariates including age, sex, two principal
components capturing population substructure, and indicator var-
iables for the ESP ascertainment scheme in all association testing.
We used QQ plots and GC l to detect possible inflation of the RV
association test p-values. Because there were a large number of
extremely rare variants, e.g., singletons and doubletons, in the ESP
WES data, we used the power set G ¼ f1; 2; 3; 4; 5; 6g for both aSPU
and aSPUr, as suggested by Pan et al. (2014) for numerical stability.
In addition, we used the following stage-wise bootstrap procedure

for aSPU and aSPUr: we started with B ¼ 1000 for all genes and then
gradually increased B. If an estimated p-value was , 50=B; we
increased B to 10 ·B to reestimate the p-value until B ¼ 106 for
genome-wide significance. Moreover, we used APOC3 as a positive
control gene to compare the power of various tests. APOC3 was
identified as the top gene harboring putatively functional RVs as-
sociated with reduced level of Ln(TG), and was further replicated
and confirmed in independent large samples (Crosby et al. 2014).
In addition, it was identified in other RV association studies
(Tachmazidou et al. 2013; Li et al. 2015).

Figure 3F shows that TG was right-skewed with some individuals
having extremely high TG levels.When applied to TG, the QQplots for
aSPU and aSPUr behaved normally as shown in Figure 3 (l, 1:04).
In contrast, the SKAT and SKAT-O tests had severely inflatedQQplots
(l = 1.89 and 1.78, respectively); the QQ plot for T1 was less inflated
but had a discernable deviation from the null in the tail area (l = 1.13).

n Table 1 Empirical type I error rates of various tests at the significance level of 0.05 for a quantitative trait with an error distribution
(Distr), a number of independent SNVs (#SNVs), and with two covariates

Distr #SNVs SKAT SKAT-O SPU(1) SPU(2) SPU(3) SPU(4) SPU(N) aSPU aSPUr

Nð0;1Þ 8 0.044 0.053 0.048 0.050 0.055 0.055 0.059 0.057 0.055
32 0.064 0.058 0.065 0.063 0.051 0.061 0.056 0.063 0.056
64 0.050 0.047 0.047 0.053 0.049 0.055 0.054 0.047 0.052

128 0.044 0.041 0.049 0.052 0.051 0.053 0.047 0.047 0.053
192 0.031 0.032 0.049 0.039 0.048 0.053 0.054 0.049 0.048
256 0.019 0.031 0.051 0.025 0.040 0.035 0.037 0.041 0.033

t3 8 0.076 0.072 0.051 0.042 0.047 0.043 0.047 0.048 0.046
32 0.113 0.105 0.050 0.046 0.050 0.055 0.052 0.045 0.042
64 0.132 0.109 0.039 0.034 0.039 0.049 0.051 0.040 0.047

128 0.114 0.105 0.048 0.027 0.045 0.042 0.057 0.048 0.047
192 0.104 0.101 0.065 0.019 0.032 0.032 0.050 0.044 0.048
256 0.087 0.074 0.042 0.007 0.013 0.022 0.043 0.026 0.062

t1 8 0.082 0.081 0.052 0.048 0.051 0.049 0.050 0.049 0.031
32 0.190 0.186 0.060 0.064 0.051 0.062 0.078 0.061 0.040
64 0.289 0.268 0.043 0.036 0.033 0.036 0.100 0.062 0.042

128 0.310 0.276 0.038 0.025 0.027 0.028 0.085 0.050 0.033
192 0.269 0.251 0.036 0.011 0.015 0.019 0.054 0.031 0.032
256 0.310 0.282 0.036 0.006 0.013 0.016 0.064 0.037 0.036

LNð0;1Þ 8 0.107 0.093 0.056 0.065 0.063 0.062 0.061 0.067 0.053
32 0.160 0.137 0.052 0.041 0.052 0.053 0.061 0.052 0.047
64 0.165 0.144 0.052 0.038 0.037 0.043 0.057 0.045 0.038

128 0.176 0.147 0.053 0.030 0.049 0.050 0.059 0.048 0.052
192 0.173 0.142 0.045 0.012 0.029 0.035 0.049 0.033 0.050
256 0.151 0.115 0.043 0.007 0.025 0.027 0.047 0.039 0.050

LNð0;2Þ 8 0.113 0.103 0.063 0.056 0.059 0.059 0.061 0.058 0.057
32 0.209 0.197 0.043 0.043 0.058 0.060 0.075 0.058 0.051
64 0.276 0.259 0.045 0.038 0.040 0.044 0.062 0.053 0.059

128 0.277 0.251 0.052 0.032 0.039 0.044 0.069 0.045 0.064
192 0.269 0.241 0.033 0.013 0.022 0.025 0.054 0.026 0.063
256 0.287 0.249 0.035 0.010 0.019 0.023 0.051 0.034 0.056

Nð0;1Þ contaminated se ¼ 5 8 0.371 0.316 0.177 0.333 0.327 0.340 0.337 0.290 0.060
32 0.226 0.187 0.078 0.139 0.136 0.143 0.155 0.121 0.054
64 0.147 0.120 0.058 0.077 0.083 0.084 0.083 0.080 0.055

128 0.089 0.089 0.061 0.048 0.054 0.054 0.069 0.068 0.060
192 0.060 0.055 0.049 0.035 0.049 0.040 0.055 0.050 0.039
256 0.045 0.041 0.041 0.027 0.045 0.035 0.060 0.040 0.047

Nð0;1Þ contaminated se ¼ 10 8 0.605 0.582 0.365 0.563 0.566 0.572 0.564 0.516 0.061
32 0.477 0.444 0.118 0.201 0.209 0.211 0.230 0.174 0.054
64 0.349 0.298 0.089 0.096 0.117 0.118 0.142 0.104 0.057

128 0.178 0.155 0.067 0.043 0.056 0.054 0.086 0.064 0.060
192 0.142 0.131 0.047 0.033 0.046 0.040 0.051 0.044 0.041
256 0.112 0.099 0.040 0.020 0.043 0.034 0.068 0.037 0.048
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Figure 1 Simulation results for a skewed error distribution LNð0;1Þ : the first row is for type I errors, and the next two rows for power in set-up I
with b ¼ ð21:2;21:2;20:8;20:8;0:8;1; 1; 1Þ9 and set-up II with b ¼ ð0:7;0:7;0:7; 1;1;1; 1:2;1:2Þ9:
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Figure 2 Simulation results for a heavy-tailed (and nonskewed) error distribution t3 : the first row is for type I errors, and the next two rows for
power in set-up I with b ¼ ð21:2;21:2;20:8;20:8;0:8;1;1;1Þ9 and set-up II with b ¼ ð0:7; 0:7; 0:7; 1; 1;1;1:2;1:2Þ9:
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We investigated the effectiveness of some ad hoc strategies, including
trimming, Winsorizing, and increasing the MAC threshold, in allevi-
ating the p-value inflation.When trimming at a1 ¼ 2:5%; l for SKAT
and SKAT-O was reduced to 1.09 and 1.10, respectively; whenWinso-
rizing at a1 ¼ 2:5%; l was reduced to 1.12 and 1.11, respectively.
Despite the improvement, the QQ plots for SKAT and SKAT-O
remained inflated (Figure S1). When we excluded genes with a MAC
, 30; the QQ plots for SKAT and SKAT-O were still inflated with l =
1.36 and 1.30, respectively, whereas T1 had a much improved QQ plot
(l = 1.04) (Figure S2). However, increasing the MAC threshold to
30 would further exclude 8155 genes, including the positive control
gene APOC3 with 14 minor alleles. When applied to Ln(TG) and
INV(TG), all tests had well-behaved QQ plots and l9s , 1:06 (Figure
S3 and Figure S4). As shown in Figure 3F, TG approximately followed a
Log-normal distribution, leading to similar results from the Ln and
INV transformations; see the p-value comparison for APOC3 in Table
2. To investigate whether the RV association test p-value inflation was

also applicable to common variants, we performed conventional
variant-by-variant association testing of TG for 50,602 SNPs with
an MAF $ 5%: As shown in Figure S5, the QQ plot was well be-
haved with l ¼ 1:02; suggesting that the p-value inflation was likely
a unique problem for some RV association tests.

Table 2 shows the p-values and ranking of APOC3 by various tests.
In the analysis of TG, APOC3 was ranked 62nd by aSPUr, but was
not among the top 200 genes by all other methods; in the analyses of
Ln(TG) and INV(TG), it was ranked among the top two by T1,
SKAT-O, aSPU, and aSPUr, but not SKAT. This is consistent with
the results reported in Crosby et al. (2014) that APOC3 was the top
gene associated with Ln(TG) by the T1 test but its p-value was not
genome-wide significant in the discovery samples from the ESP. We
demonstrate here that the statistical significance of APOC3 was de-
pendent on the transformation of the phenotype TG. Figure 3F
shows that the carriers of the minor alleles for five out of six RVs
in APOC3 had reduced TG levels compared with the population

Figure 3 QQ plots for the analysis of triglyceride with 13,978 genes with MAC $5: (A) SKAT (genomic control l ¼ 1:89), (B) SKAT-O (l ¼ 1:78),
(C) T1 (l ¼ 1:13), (D) aSPU (l ¼ 1:02), and (E) aSPUr (l ¼ 1:04). (F) Histogram of covariate-adjusted triglyceride residuals with variant carriers of
APOC3 highlighted.
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average. In the presence of quite a few individuals with extremely
high TG levels, APOC3 was only nominally associated with TG and
lowly ranked by all RV association tests except for aSPUr. By down-
weighting the extremely high TG observations, aSPUr increased the
statistical significance and ranking of APOC3 compared with aSPU
and other tests, while avoiding global inflation of the p-values. On
the other hand, since both Ln and INV transformations reduced the
impact of extremely high TG observations, the association signal of
APOC3 was much amplified, resulting in its high ranking. In addi-
tion, as the majority of the variants in APOC3 reduced the TG level,
i.e., the effects were roughly in the same direction, the T1 burden
test and adaptive tests that incorporate the burden test, such as
aSPU, aSPUr, and SKAT-O, yielded higher ranking for APOC3 than
did SKAT.

DISCUSSION
In summary, we have demonstrated using extensive simulations and
application to the ESP WES data that SKAT and SKAT-O are not
robust to heavy-tailed or skewed error distributions of quantitative
traits with inflated type I error rates.Ad hoc remediation procedures,
such as trimming andWinsorizing, may not be effective in reducing
the inflated type I error rates and may lead to severe power loss.
Depending on the underlying trait distributions, Ln or INV trans-
formation may help control the type I error rates for SKAT and
SKAT-O, which, however, could lead to transformation-specific
association results as illustrated in the APOC3 example, as well as
power loss as demonstrated in simulation set-up II in Figure 2.
On the other hand, the aSPU test and the newly proposed aSPUr
test are much more robust to quantitative traits’ deviation from
normality.

The nonrobustness of the SKAT test is mainly due to its poor
asymptotic approximation of the null distribution in the presence of
outliers. Note that the issue with SKAT remained with the use of its
resampling method to calculate its p-values: we found that SKAT-
Resampling implemented in the R package “SKAT” gave essentially
equal p-values to those of SKAT in both simulations and real data
application; the Pearson correlation between the two sets of the
p-values was . 0:999: Moreover, the RV weighting scheme of SKAT
makes its type I error inflation even worse. Since SKAT puts a higher
weight on a more rare SNV j, if Xij ¼ 1; then it is a high-leverage point;
in addition, if Yi is outlying, then we know ðXij;YiÞ is an influential
point. Hence, although SKAT’s weighting on rare SNVs might help it
gain power to detect associated RVs, at the same time, the weighting
also renders its nonrobustness to observations with outlying traits,
which could happen when the trait has a heavy-tailed or right-skewed
distribution, as shown in our simulations and supported by the real
data application. For the latter, when applied to TG, SKAT with its

default Betað1; 25Þ weighting and equal weighting gave a GC l of 1.89
and 1.86, respectively.

Recently Auer et al. (2016) also reported that single SNV-based and
SNV-set-based RV tests can be nonrobust to phenotypic outliers and
nonnormality, which is in agreement with the main theme of this paper
and highlights the importance of the topic studied here. They rec-
ommended the INV transformation for nonnormally distributed
traits. Our work here is distinctive from Auer et al. in several im-
portant aspects. First, in addition to demonstrating the nonrobust-
ness of existing RV tests, we have proposed a new SNV-set-based
robust RV test, aSPUr. Second, while Auer et al. applied the Huber
robust regression in the context of single SNV-based RV testing, we
impose the Huber loss on the score vector U in the proposed aSPUr,
which is generalizable to the broad class of score vector-based SNV-
set RV tests, e.g., SPU(1)/T1 and SPU(2)/SKAT. Third, in contrast
to the finding of Auer et al. that the permutation test was the least
powerful method when applied to single SNV-based RV test, we
found the permutation-based aSPU and aSPUr to be robust in terms
of both type I error control and maintaining high statistical power
in the presence of true signals. Finally, we found that while the
INV transformation could maintain the type I error rate, it could
also lead to transformation-dependent ranking order of p-values as
demonstrated in the APOC3 example (Table 2).

Weproposed the aSPUr test in theHuber loss framework. It is one of
the first proposed and most thoroughly studied loss function in the
robust statistics literature. For example, when the error distribution
is normal, it has been shown that the Huber loss achieves 95% asymp-
totic efficiency with the tuning parameter c being equal to 1.345 (Huber
1964). We found that it performed satisfactorily in our extensive
numerical experiments. Other loss functions are also possible, for
example, Tukeys biweight function (Jureckova and Picek 2006),
which warrants further investigation.

In conclusion, we would recommend the use of the aSPU test for its
robustness to heavily-tailed or skewed error distributions and its high
power acrossmany situations due to its adaptiveness. If there is evidence
of inflated type I error or l, e.g., throughQQplots, then onemay try the
more robust aSPUr test or SKAT and SKAT-O with the INV trans-
formation. Finally, neither Winsorizing nor trimming the data before
applying another test, e.g., SKAT or SKAT-O, outperformed the aSPUr
test that was applied to the original data.
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n Table 2 RV association testing results of positive control gene APOC3 (among 13,978 genes with a MAC ‡ 5)

Phenotype SKAT SKAT-O T1 aSPU aSPUr

TG GC l 1.89 1.78 1.13 1.02 1.04
APOC3 p-value 0.018 0.021 0.018 0.035 0.0036
APOC3 rank 642 620 297 501 62

Ln(TG) GC l 1.05 1.06 1.03 1.01 1.03
APOC3 p-value 2:27· 1024 3:70 ·1025 4:19· 1025 1:18· 1024 3:30 ·1025

APOC3 rank 6 1 1 2 1
INV(TG) GC l 1.03 1.05 1.03 1.02 1.04

APOC3 p-value 2 ·1024 3:85 ·1025 4:67· 1025 9:70· 1025 3:30 ·1025

APOC3 rank 6 1 1 2 2
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