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Andrews’ Plots for Extended Uses

Il Youp Kwak1) and Myung-Hoe Huh2)

Abstract

Andrews (1972) proposed to combine trigonometric functions to repre-
sent n observations of p variates, where the coefficients in linear sums are
taken from the values of corresponding observation’s respective variates. By
viewing Andrews’ plot as a collection of n trajectories of p-dimensional ob-
jects (observations) as a weighting point loaded with dimensional weights
moves along a certain path on the hyper-dimensional sphere, we develop
graphical techniques for further uses in data visualization. Specifically, we
show that the parallel coordinate plot is a special case of Andrews’ plot and
we demonstrate the versatility of Andrews’ plot with a projection pursuit
engine.
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1. Introduction

For graphical representation of p-dimensional n observations x1, . . . ,xn of
which xi = (xi1, xi1, . . . , xip), i = 1, . . . , n, Andrews (1972) proposed to use

fxi(t) = xi1 2−1/2 + xi2 sin t + xi3 cos t + xi4 sin 2t + xi5 cos 2t + · · ·

for 0 ≤ t < 2π. Figure 1.1 is the Andrews’ plot for a subset of the Olive Oil data
with eight variables (Unwin et al., 2006; Cook and Swayne, 2007).

1) Graduate Student in Master’s Course, Department of Statistics, Korea University,

Anam-Dong 5-1, Sungbuk-Gu, Seoul 136-701, Korea.

E-mail : iykwak@korea.ac.kr

2) Professor, Department of Statistics, Korea University, Anam-Dong 5-1, Sungbuk-Gu,

Seoul 136-701, Korea.

Correspondence : stat420@korea.ac.kr

* Authors are willing to send R scripts for drawing pictures contained in this paper to

anyone interested.



66 Il youp Kwak and Myung-Hoe Huh

Figure 1.1: Andrews’ plot for Region 3 subset of the Olive Oil data that has
n = 151 observations with p = 8 variables (palmitic, palmitoleic, stearic, oleic,
linoleic, linolenic, arachidic, eicosenoic). Variables are standardized to have mean
0 and standard deviation 1.

Andrews’ scheme possesses at least two nice properties (Embrechts and Herzb-
erg, 1991). First, Andrews’ function for the mean vector x̄ is equal to the average
of individual Andrews’ functions. That is,

fx(t) =
1
n

n∑

i=1

fxi(t).

Second, Euclidean distance between observations are preserved in the functional
space in the sense that

‖xi − xi′‖2 =
1
π

∫ 2π

0
(fxi(t)− fxi′ (t))

2dt.

But, in practice, the plot of Andrews’ functions fxi(t), i = 1, . . . , n for t ∈ [0, 2π)
have several shortcomings in visualization of the multivariate dataset. Above all,
the plot’s outlook appears somewhat differently depending on the input order of
p variables. Also, the plot may not reveal interesting features hidden in the data.

In this study, we view Andrews’ plot as a collection of n trajectories of p-
dimensional objects (observations) as a weighting point loaded with dimensional
weights moves along a certain designated path on the hyper-dimensional sphere.



Andrews’ Plots for Extended Uses 67

Such conceptualization leads to extended uses in displaying the multi-dimensional
dataset. For instance, we generate the parallel coordinate plots as a special case
of Andrews’ plots and enhance Andrews’ plots by adding a projection pursuit
engine to move along better scenic paths on the sphere.

2. Andrews’ Paths and Parallel Coordinate Plot

Define a “basic” Andrews’ path by

a2k+1(t) =
(

1√
2
, sin t, cos t, sin 2t, cos 2t, . . . , sin kt, cos kt

)′

for 0 ≤ t < 2π. Then ‖a2k+1(t)‖2 = (2k + 1)/2, not varying with t. Therefore,
Andrews’ path a2k+1(t) for 0 ≤ t < 2π is a continuous smooth curve on a 2k + 1
dimensional sphere with fixed radius. Also, we may note that, for odd p (=
2k + 1), Andrews’ functions are given by

fxi(t) = 〈ap(t),xi〉 , for i = 1, . . . , n,

where 〈a,x〉 denotes the inner product between two p-dimensional vectors a and
x.

For even p (= 2k), we augment p-dimensional observations x1, . . . ,xn to p +
1 dimensional x+

1 , · · · ,x+
n , by inserting one blank component to the front of

x1, . . . ,xn. That is,

x+
i = (0, xi1, xi2, . . . , xip), for i = 1, . . . , n.

Hence, for even p (= 2k),

fxi(t) =
〈
ap+1(t),x+

i

〉
, for i = 1, . . . , n.

Therefore, Andrews’ functions are projections of multi-dimensional observa-
tion vectors on equal-length weighting vectors ap(t) in Andrews’ path. Hereafter,
we assume that p is odd and we use notations x1, . . . ,xn for x+

1 , . . . ,x+
n .

Now, we question how many pairwise orthogonal vectors can be found in
Andrew’s path? The answer is p (which is assumed to be odd) and one set of
orthogonal vectors are ap(tk), where tk = 2π(k − 1)/p for k = 1, . . . , p. Since it
can be shown without much difficulty, we will omit the proof (However, it does
not hold for even p). Therefore, for odd p, if properly scaled,

ap(t1), . . . ,ap(tp)
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Figure 2.1: Andrews’ plot as a smooth version of parallel coordinate plot for the
Olive Oil (Region 3) data.

forms an orthonormal basis for the p-dimensional Euclidean space.
Now, we consider a “rotated” Andrews’ path by

bp(t) = Up ap(t) , (2.1)

where

Up =




ap(t1)′/
√

p/2
...

ap(tp)′/
√

p/2




is a p × p orthonormal matrix. Then, bp(t) for 0 ≤ t < 2π is an orthonormal
transform of the basic Andrews’ path and

(bp(t1), . . . ,bp(tp)) =
√

p/2 Ip ,

where Ip denotes the p× p identity matrix. Therefore, Andrews’ functions along
the rotated Andrews’ path (2.1)

fxi(t) = 〈bp(t),xi〉 , for i = 1, . . . , n

yield parallel coordinate plot (PCP) of p input variables. Figure 2.1 shows a
“rotated” Andrews’ plot that is almost identical to PCP. There are two differences



Andrews’ Plots for Extended Uses 69

compared to conventional PCP. First, we now have smoothly connected curves
instead of piecewise linear lines. In PCP, the former type is considered the better
one compared to the latter type (Huh and Park, 2008). Second, all curves meet
at t = 0 and t = 2π, since the “zero” variable is inserted into the dataset (of eight
variables) to make p, the number of variables, odd.

3. Projection Pursuit via Andrews’ Plots

In this section, we utilize Andrews’ plot more fully to produce a “projection
pursuit” diagram. Now we sketch our technique.

To extend the idea of a rotated path of Section 2, define a “randomly rotated”
Andrews’ path by

cp(t) = Vp ap(t) ,

where Vp is a p × p randomly generated orthonormal matrix. And, define “ran-
domly rotated” Andrews’ functions by

fxi(t) = 〈cp(t),xi〉 , for i = 1, . . . , n. (3.1)

Graphs of Andrews’ functions (3.1) over 0 ≤ t < 2π, which we call a “randomly
rotated” Andrews’ plots, may reveal various features of the multivariate dataset.

“Randomly rotated” Andrews’ plot shows the projected trajectories (3.1) over
t. For each specific randomly generated Andrews’ plot, we may select t0 between
0 and 2π, at which the distribution of projections fx1(t), . . . , fxn(t) becomes
the most “interesting”. Following a standard convention of projection pursuit
methodology (Cook and Swayne, 2007), we will adapt the holes index IHoles to
one dimensional projections. It is expressed as

IHoles(y1, . . . , yn; Vp) =

1− 1
n

n∑

i=1

exp
(
−1

2
y2

i

)

1− exp
(
−p

2

) ,

where yi = fxi(t), i = 1, . . . , n. Once we determined t0 at which the index is
maximized over t, save cp(t0) = Vp ap(t0) for later use.

We repeat the above process over m (= 100) times, to exploit more. We
denote c∗p for the winner among cp(t0)’s and write

y∗i =
〈
c∗p,xi

〉
, for i = 1, . . . , n.
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Figure 3.1: “Randomly rotated” Andrews’ plot for Olive Oil (Region 3) data.
The dotted line shows the optimal point at which the holes index is maximized.

Figure 3.1 is a “randomly rotated” Andrews’ plot for Olive Oil data (Region
3). The value at dotted line is the optimal point c∗p at which the holes index is
maximized.

Put

x∗i =
(
Ip − c∗pc

∗t
p /

∥∥c∗p
∥∥2

)
xi (= (Ip −Hp)xi ), i = 1, . . . , n

and consider an independent “randomly rotated” Andrews’ path

dp(t) = Wp ap(t),

where Wp is a p× p randomly generated orthonormal matrix. Then, it holds

〈 (Ip −Hp)dp(t),xi〉 = 〈dp(t), (Ip −Hp)xi〉 , for i = 1, . . . , n.

Hence “randomly rotated” Andrews’ function for each xi along the path dp(t)
orthogonal to c∗p is identical to that for x∗i along the path dp(t). Thus, we repeat
the process with residuals x∗1, . . . ,x

∗
n from the first round to obtain the second

dimensional visualization. This second round produces the optimal projection
vector d∗p and projections of x∗1, . . . ,x

∗
n on d∗p. We denote them by

z∗i =
〈
d∗p,x

∗
i

〉
, for i = 1, . . . , n .
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Figure 3.2: Projection pursuit diagram of the Olive Oil (Region 3) data via
Andrews’ plot. Colors represent three subregions of sample origins.

Finally, plot (y∗i , z
∗
i ), i = 1, . . . , n. The picture may be considered as a “projection

pursuit” for p-dimensional n observations x1, . . . ,xn. Figure 3.2 is a projection
pursuit diagram of the Olive Oil data (Region 3) via Andrews’ plot. Colors
represent three subregions of sample origins. We now see that three subregions
are well separated.

4. Concluding Remarks

This study is aimed to broaden the use of the Andrews’ plot which relies
on Fourier orthogonal functions rather than Euclidean axes. By extending the
concept of Andrews’ path, we have shown that the parallel coordinate plot can be
obtained as a special case of Andrews’ plot and we even obtained a “projection
pursuit” diagram via Andrews’ plots. In generation of such plots, we used a brute
force Monte Carlo optimization which needs to be refined.
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