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Abstract

Parallel coordinate plot of Inselberg (1985) is useful for visualizing dozens of
variables, but so far the plot’s applicability is limited to the variables of numerical
type. The aim of this study is to extend the parallel coordinate plot so that it
can accommodate both numerical and categorical variables. We combine Hayashi’s
(1950, 1952) quantification method of categorical variables and Hurley’s (2004)
endlink algorithm of ordering variables for the parallel coordinate plot. In line with
our former study (Kwak and Huh, 2008), we develop Andrews’ type modification
of conventional straight-lines parallel coordinate plot to visualize the mixed-type
data.
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1. Background and Aim

For the dataset with p (≥ 3) numerical variables, we use more often parallel coordi-
nate plot(PCP) of Inselberg (1985) because of its compactness. Compared with p × p
scatterplot matrix, conventional PCP contains only p − 1 diagrams. Thanks to Hur-
ley’s (2004) endlink algorithm, we may re-arrange the order of variables in PCP to ease
the data exploration. PCP’s applicability, however, is limited to the dataset or subset
data consisting of numerical variables. The aim of this study is to extend the parallel
coordinate plot so that it can accommodate both numerical and categorical variables.

Consider the dataset of n observations containing two numerical and two categorical
variables, X1, X2, V1, V2. We assume that two numerical variables X1 and X2 are given
in standardized forms, x1 and x2, with mean 0 and standard deviation(SD) 1. For the
variable V1 with k1 categories, we assume it is represented in dummy coding matrix Z1

with k1 columns, one column for each category. Similarly, we represent the variable V2

with k2 categories by the dummy coding matrix Z2 with k2 columns.
There are three types in the pair of two variables: numerical-numerical, numerical-

categorical (or categorical-numerical), and categorical-categorical. For numerical-numerical
pair, the association of two variables is measured by Pearson’s product moment correla-
tion and the data points on the parallel axis are linked as in conventional PCP. For two
other types of pairs, we apply Hayashi’s (1950, 1952) quantification methods to quantify
categories and measure the association between variables as follows.
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For numerical-categorical pair, say X1 and V1 with k1 categories, Hayashi’s quantifi-
cation can be formulated as

max
a1

xt
1Z1a1 / (n− 1) (1.1)

subject to at
1Z

t
1Z1a1 / (n− 1) = 1 and 1t

nZ1a1 = 0,

where a1 is the k1×1 vector of quantified values for k1 categories in V1 and 1n is the n×1
vector of elements all equal to 1. The second restriction in (1.1) requires that the n× 1
quantified vector Z1a1 of V1 should have mean 0, and the first restriction together with
the second restriction requires that Z1a1 should have SD 1. By Lagrangian multiplier
method, one can easily show that

a1 = D−1
1 Zt

1x1 / (xt
1Z1D

−1
1 Zt

1x1 / (n− 1))1/2,

where D1 = Zt
1Z1 is the k1 × k1 diagonal matrix, with diagonal elements equal to the

observed frequencies of respective categories in V1. The optimized value of (1.1) is equal
to Pearson’s correlation between X1 and Z1a1, the quantified variable of V1. This method
is known as Hayashi’s Quantification Method I or II (Huh, 1999).

For categorical-categorical pair, say V1 with k1 categories and V2 with k2 categories,
Hayashi’s quantification can be formulated as

max
a1,a2

at
1Z

t
1Z2a2 / (n− 1)

subject to at
1Z

t
1Z1a1 / (n− 1) = 1 , 1t

nZ1a1 = 0, (1.2)

and at
2Z

t
2Z2a2 / (n− 1) = 1 , 1t

nZ2a2 = 0,

where a1 and a2, respectively, are the k1 × 1 and k2 × 1 vectors of quantification values
for k1 categories in V1 and for k2 categories in V2. It is well known that a1 and a2 can
be obtained via the singular value decomposition of

G = D
−1/2
1 Zt

1Z2D
−1/2
2 .

More specifically, the solution vectors a1 and a2 of (1.2) are given by

a1 = (D1 / (n− 1))−1/2u1 and a2 = (D2 / (n− 1))−1/2u2,

where u1 and u2 are left and right singular vectors of k1× k2 matrix G corresponding to
the largest singular value except the trivial root. The optimized value of (1.2) is equal
to Pearson’s correlation between Z1a1 and Z2a2, the quantified variables of V1 and V2,
respectively. This method is known as Hayashi’s Quantification Method III (Huh, 1999).

In that way, we may determine the correlation between any types of variable. In the
next section, we will propose a PCP for mixed-type data via Hurley’s endlink algorithm,
sequentially applying Hayashi’s quantification to categorical variables.
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2. Modification of Endlink Algorithm

Parallel coordinate plot appears differently depending on the order of variables. For
the purpose, we want to use Hurley’s (2004) endlink algorithm which joins the nearest
endpoints of ordered clusters. The problem is that the distances between pairs of variables
are not readily available in the case of mixed-type data.

We propose a modified version of Hurley’s (2004) endlink algorithm to determine
the order variables of numerical and/or categorical type in the parallel coordinate plot.
Suppose that there are variables of numerical and/or categorical type.

Step 1: We make a p×p correlation matrix R among variables of numerical and/or
categorical type. For the pair of variables of which at least one variable is not
numerical, we use Hayashi’s quantification methods to acquire the correlation co-
efficient. From R = {rij}, we derive the distance matrix D = {dij} by

dij = 2(1− rij), for i, j = 1, · · · , p .

Step 2: Join the closest ends of chained variables. If all variables are chained to
form a single cluster, then stop.

Step 3: If any variable of newly joined pair is categorical, replace its categori-
cal codes by the quantified values related to the counter variable and change the
variable type from categorical to numerical. Return to Step 1.

We will illustrate our algorithm by a scenario for the simulated dataset in which two
variables (X1 and X2) are numerical and two variables (V1 and V2) are categorical.

Cycle 1: V1 and V2 are quantified related to X1 and X2, all separately. Also, V1

and V2 are mutually quantified. The pair of X1 and V1 is selected. V1 is replaced
by quantified values Ṽ1 related to X1 and the variable type is changed to numerical.
We have a chain of Ṽ1 −X1.

Cycle 2: V2 is quantified related to X1, X2 and Ṽ1, all separately. The pair of X1

and X2 is selected. Thus we have a chain of Ṽ1 −X1 −X2.

Cycle 3: V2 is quantified related to X2 and Ṽ1, all separately. The pair of X2 and V2

is selected. Categorical V2 is quantified with respect to X2, turned into numerical
Ṽ2. Thus we have a chain of Ṽ1 −X1 −X2 − Ṽ2.

In the above scenario, we simulated for 100(=n) observations of (X1, X2, X3, X4) from
a multivariate normal distribution with the zero means and the covariance matrix

Σ =




1.0 0.6 0.9 0.0
0.6 1.0 0.2 0.4
0.9 0.2 1.0 0.1
0.0 0.4 0.1 1.0


 .
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Then (X3, X4) are discretized into categorical variables (V1, V2) via

V1 =





1 if X3 ≤ −1.5
2 if − 1.5 < X3 ≤ −0.5
3 if − 0.5 < X3 ≤ 0.5
4 if 0.5 < X3 ≤ 1.5
5 if X3 > 1.5

, V2 =





1 if X4 ≤ −1
2 if − 1 < X4 ≤ 1
5 if X4 > 1

.

Running our algorithm, V1 and V2 are quantified to

Ṽ1 =




−2.15
−1.04
0.04
0.99
1.79




, Ṽ2 =



−1.59
−0.16
2.28


 ,

and we have the ordered cluster Ṽ1 − X1 − X2 − Ṽ2. Figure 2.1 shows the PCP [left]
and Andrews’ type PCP [right]. Andrews’ type PCP or APCP is the Andrews’ plot
(Andrews, 1972) for the orthogonal-transformed dataset, so that the variables appears
in the designated order (Kwak and Huh, 2008).

Figure 2.1: PCP[left] and APCP[right] for the simulated dataset of four variables.

3. Cars93 Data

Cars93 data, available at R’s MASS library, consists of 93 records on automobile mod-
els. Among 27 characteristics available for each automobile, we included 20 variables for
analysis: (Hereafter, categorical variables are underlined) Type, AirBags, DriverTrain,
Cylinders, EngineSize, Man.trans.avail, Fuel.tank.capacity, Passengers, Length,
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Wheelbase, Width, Weight, Origin, MPG.city, MPG.highway, Horsepower, RPM, Rev.per-
.mile, Turn.circle and Price. We omitted one record which has non-numerical value
on Cylinders.

Figure 3.1 shows APCP of Cars93 data set. The individual curves are colored by
Price (light color for low price and dark color for high price). In the plot, we may
find the categorical variable Type, quantified to -1.21 for “Small”, -0.93 for “Sporty”,
-0.21 for “Compact”, 0.55 for “Midsize”, 1.37 for “Van” and 1.50 for “Large”, are lo-
cated between two numerical variables, Fuel.tank.capacity and Wheelbase. Average
Fuel.tank.capacity by Type are -1.22, -0.30, -0.17, 0.56, 1.32, 0.75, while average
Wheelbase by Type are -1.10, -0.84, -0.19, 0.50, 1.24, 1.36 (in standardized unit).

We clearly see that MPG.highway, MPG.city, and Rev.per.mile form one cluster of
variables with inter-correlations 0.94, 0.70 and Price, Horsepower, Cylinders, EngineS-
ize, Width, Weight, Fuel.tank.capacity, Type, Wheelbase, Length, and Turn.circle
form another group with inter-correlations 0.78, 0.79, 0.69, 0.87, 0.88, 0.90, 0.82, 0.90,
0.82, 0.74.

Figure 3.1: APCP for Cars93 Data.

4. German Credit Data

German Credit data, available at http://mlearn.ics.uci.edu/MLSummary.html, con-
tains financial and socio-demographic information on 1000 ( = n) individuals. Number
of measured variables are 20 (= p) except the classification code for credit outcome
(good/bad). Among the variables, seven variables are numerical and the remaining thir-
teen variables are categorical. The upper APCP of Figure 4.1 shows the good credit
cases as reference. In contrast, the lower APCP shows bad credit cases as supplementary
observations. Overall features of two plots are not lucid, so we draw the mean curve and
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Figure 4.1: APCP’s for German Credit Data: Good credit cases as reference [Upper],
Contrasted to bad credit cases as supplementary observations [Lower].

plot its 95% confidence limits of bad credit cases separately in Figure 4.2.
In Figure 4.2, we can see that bad credit individuals tend to gather at

1) negative values of X6 (savings: Category 1=-0.89, 4=0.63, 2=1.01, 3=1.21, 5=1.23)
and X1 (checking: 1=-1.86, 3=-0.76, 2=0.28, 4=0.72),

2) positive values of X20 (foreign worker: 2=-4.49, 1=0.22), X2 (duration) and X5
(amount),

3) positive values of X19 (telephone: 1=-0.84, 2=1.18), X17 (job: 2=-0.41, 3=-0.34,
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Figure 4.2: Mean curve and its 95% confidence limits of bad credit cases:
Derived from the lower plot of Figure 4.1

4=1.33, 1=5.48) and X7 (employment: 3=-0.41, 4=-0.22, 2=-0.04, 5=-0.15, 1=4.08),
4) positive values of X15 (housing: 2=-0.35, 1=-0.16, 3=3.14),
5) negative values of X13 (age),
6) negative values of X16 (number of credits) and X3 (history: 1=-0.91, 2=-0.90,

0=0.67, 3=0.67, 4=1.21).
Thus bad credit individuals can be typified by

1) savings (X6) less than 100 and checking (X1) < 0,
2) foreign worker (X20), large duration and larger amount,
3) telephone owner (X19), manager/self-employed/qualified employee/officer (X17),

and unemployed (X7),
4) free house (X15),
5) young (X13),
6) small number of credits (X16) and all credits paid back duly/existing credits paid

duly till now (X3).
In that way, we see the difference between two groups of individuals with additional

information on the clustered list of variables carrying the disparity.

5. Concluding Remark

This study is aimed to represent the mixed type data on PCP. Combining Hayashi’s
quantification method of categorical variables and Hurley’s endlink algorithm for ordering
variables, we made a PCP and its variation for mixed type data. Usefulness of proposed
graphs are demonstrated via two real datasets, Cars93 and German Credit data.
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