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ABSTRACT Automated image acquisition, a custom analysis algorithm, and a distributed computing resource were used to add time
as a third dimension to a quantitative trait locus (QTL) map for plant root gravitropism, a model growth response to an environmental
cue. Digital images of Arabidopsis thaliana seedling roots from two independently reared sets of 162 recombinant inbred lines (RILs)
and one set of 92 near isogenic lines (NILs) derived from a Cape Verde Islands (Cvi) 3 Landsberg erecta (Ler) cross were collected
automatically every 2 min for 8 hr following induction of gravitropism by 90� reorientation of the sample. High-throughput computing
(HTC) was used to measure root tip angle in each of the 1.1 million images acquired and perform statistical regression of tip angle
against the genotype at each of the 234 RIL or 102 NIL DNA markers independently at each time point using a standard stepwise
procedure. Time-dependent QTL were detected on chromosomes 1, 3, and 4 by this mapping method and by an approach developed
to treat the phenotype time course as a function-valued trait. The QTL on chromosome 4 was earliest, appearing at 0.5 hr and
remaining significant for 5 hr, while the QTL on chromosome 1 appeared at 3 hr and thereafter remained significant. The Cvi allele
generally had a negative effect of 2.6–4.0%. Heritability due to the QTL approached 25%. This study shows how computer vision and
statistical genetic analysis by HTC can characterize the developmental timing of genetic architectures.

METHODOLOGIES for characterizing genomes and geno-
types are more advanced in terms of their degree of

automation and throughput than their phenotype counter-
parts. This imbalance hinders progress in mapping genotype
to phenotype in model systems such as the Arabidopsis thaliana
plant, the subject of the present study. Computer vision meth-
odologies can help address this imbalance by enabling objec-
tive, accurate, and potentially automated measurements of
size and shape captured in digital images (Spalding 2009).
The Arabidopsis seedling root is well suited for this approach
because it grows and responds well to stimuli in experimental
scenarios that permit acquisition of high-quality images from
which shape and size descriptors such as midlines, local cur-
vature, and angles can be computationally extracted (Miller

et al. 2007; Chavarria-Krauser et al. 2008; French et al. 2009).
For example, Durham Brooks et al. (2010) used automated
analysis of high-resolution images to measure the influence of
seed size, seedling age, and media composition on the time
course of root gravitropism, a dynamic growth response to
a change in orientation with respect to the gravity vector
(Blancaflor and Masson 2003; Morita 2010). Miller et al.
(2010) used the same approach plus extended computational
analysis to quantify a transient gravitropism phenotype and
its precise time of onset in young roots of glr3.3 glutamate
receptor mutants. Other researchers have taken advantage of
automated image acquisition and analysis to measure shoot
growth features over time (Zhang et al. 2012; Tisné et al.
2013) or to acquire rotational series of branching root sys-
tems growing in a transparent gel to capture a third spatial
dimension instead of time (Iyer-Pascuzzi et al. 2010; Clark
et al. 2011).

The degree of automation made possible by computational
image analysis increases the feasibility of systematically
acquiring high-resolution phenotype data from genetically
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structured populations for the purpose of large-scale statisti-
cal genetic studies. The benefits of accuracy and objectivity
attending this approach increase the quality of the resulting
phenotype data. Accordingly, automated or semiautomated
image analysis is beginning to impact the mapping of
quantitative trait loci in plants (Herridge et al. 2011; Moore
et al. 2013; Tisné et al. 2013; Topp et al. 2013). The project
presented here combines an ability to capture the time course
of gravitropism in high resolution with the throughput
needed to make mapping populations feasible subjects. Grav-
itropism was selected for study because it is a model that
embodies perception and transduction of an external cue,
hormonal control of growth, and adaptation to a new envi-
ronmental state (Boonsirichai et al. 2002). These are funda-
mental physiological and developmental processes, now
made accessible to statistical genetic analysis by novel appli-
cation of automated computer vision and computation
methodologies.

Materials and Methods

Germplasm

The Arabidopsis seed stocks used here were described in a re-
cent machine-vision study of seed size and shape QTL (Moore
et al. 2013). As in the previous report, recombinant inbred line
1 (RIL1) refers to a set of 162 F10 RILs derived from a cross
between the Landsberg erecta (Ler) and Cape Verde Islands
(Cvi) accessions of A. thaliana (Alonso-Blanco et al. 1998)
donated to us by Patrick Masson, University of Wisconsin,
and to the phenotype dataset obtained with those seeds.
RIL2 refers to progeny of RIL1 produced in a random-
designed and carefully controlled seed-bulking exercise to du-
plicate the population in a different maternal environment as
described in Moore et al. (2013). NIL refers to 92 near iso-
genic lines created by introgression of various short regions of
Cvi DNA into the Ler background (Keurentjes et al. 2007) and
raised in the same manner as the RIL2 seeds, again as de-
scribed in Moore et al. (2013). The plant populations or the
phenotype datasets derived from them are referred to as RIL1,
RIL2, or near isogenic line (NIL).

Plant culture

In a row on a Petri plate containing 1 mM KCl, 1 mM CaCl2,
5 mM 4-morpholineethanesulfonic acid, pH 5.7 with BIS-
TRIS propane, and gelled with 1% agar, three seeds were
sown �0.5 cm apart. Plates with seeds were placed at 4� for
2–4 days of stratification before being cultured vertically in
a 22�-growth chamber under constant white light for 3 days,
at which point the primary root was 2–8 mm in length.

Root imaging

An imaging system, consisting of 11 charge-coupled device
cameras (Marlin F146B; Allied Vision Technologies) each
equipped with a macro zoom lens (model NT59-157;
Edmund Optics), was used to capture digital images of
roots on as many Petri plates, each backlit with 880 nm

radiation in a room maintained at �22�, essentially as pre-
viously described (Durham Brooks et al. 2010; Miller et al.
2010). Instructions on how to create a similar apparatus are
posted at http://phytomorph.wisc.edu/hardware/fixed-
cameras.php. To initiate the experiment, each Petri dish
was held in a custom plate holder in front of a camera
and rotated by 90�. Framing, focusing, and starting image
acquisition, in that order, were performed within 20 sec of
sample rotation. Images were acquired automatically every
2 min for 8 hr at a resolution of 100 pixels/mm, resulting in
a 241-frame movie of the root gravitropic response. The
resulting images showed the dark roots of the three seed-
lings on a plate, against a light background. A video of an
example experiment is provided as Supporting Information,
File S1. Because each response recording lasted 8 hr, two
successive trials per camera were acquired within a given
day to increase the throughput of phenotype acquisition. To
ensure that the roots being compared were at similar growth
stages, only those with initial lengths between 3 and 8 mm
were used for QTL analysis. RIL1, RIL2, and NIL were phe-
notyped consecutively. Within each population, genotypes
were selected for measurement according to a randomized
order.

Tip angle measurement

The camera firmware that controlled acquisition also auto-
matically saved the images to a local disk array. A file
synchronization protocol nightly copied the images to disks
housed in the Department of Computer Sciences from where
they were automatically read and processed for tip angle
measurements on the University of Wisconsin Center for
High-Throughput Computing (CHTC) grid, which is managed
and scheduled by the HTCondor software tool (Thain et al.
2005). The custom algorithm that measured tip angle at each
time point in a time series of frames was implemented in
Matlab. The algorithm first binarized the grayscale images
to isolate the roots from the background (Figure 1, A and
B). Erosion and pruning produced a continuous, branchless
skeleton of the root. The set of pixels forming the boundary of
the root apex was located within an 81 3 81 pixel patch of
the binarized root image centered at the terminus of the
skeleton. The local curvature at each position of the boundary
was determined by continuous wavelet transformation of
a parameterized trace of the boundary pixels. The point of
maximum curvature was labeled the root tip (Figure 1C). The
largest circle fit within a 60 3 60 pixel patch centered at the
root tip was used to mask (set to zero) a portion of the root
apex large enough that the tip angle could be equated with
the first principal component determined by principal compo-
nents analysis (Figure 1D). The angle of each root tip in each
frame was thus determined, stored in comma-separated value
files, and automatically copied to the local server one day
after the experiment was performed. The large majority of
trials were successfully processed automatically, resulting in
8–20 independent time course measurements for each geno-
type. The most common problems encountered were blurry
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images caused by excessive condensation forming on the lid
of the Petri plate and two roots colliding during the experi-
ment. In all, 2123, 2325, and 2536 roots were successfully
imaged and analyzed in the RIL1, RIL2, and NIL populations,
respectively.

Stepwise QTL analysis using HTCondor

To add a high-resolution time axis to a QTL map, stepwise
QTL analyses (Manichaikul et al. 2009) were performed at
each of the 241 time points using tip angle as the phenotype.
The approach uses a penalized LOD score, with the LOD score
for a multiple-QTL model (the log10 likelihood ratio compar-
ing the given model to the null model with no QTL) penalized
by the complexity of the model with separate penalties for
main effects and pairwise interactions derived by a permuta-
tion test with a nominal significance level of 5% in the con-
text of a two-dimensional, two-QTL genome scan. The
approach uses a penalty on the main effects, Tm, and two
different penalties on interactions, TiH (heavy) and TiL (light),
and considers the structure of a QTL model to assign these
penalties; see Manichaikul et al. (2009).

Performing 241 separate multiple-QTL analyses presented
computational challenges especially because, to establish
the penalties for each time point, 25,000 permutations of
the phenotype against the genotype were performed in the
context of a two-dimensional, two-QTL genome scan, using
Haley–Knott regression (Haley and Knott 1992). The calculations

were performed with R/qtl (Broman et al. 2003), an add-on
package for the R statistical software (R Development Core
Team 2013). A directed acyclic graph (DAG) created in DAGman
(Couvares et al. 2007) structured the permutation tests into
five per job and the HTCondor software tool was used to
execute the 1.2 million separate compute jobs (5000 jobs
per time point 3 241 time points) in parallel on the CHTC
or the Open Science Grid (OSG) distributed computing resour-
ces. After the results of each permutation test were automat-
ically collated, the DAG triggered automatic model selection
and QTL processing, again performed using R/qtl (Broman
et al. 2003). Model fitting was performed in the manner de-
scribed in Moore et al. (2013).

Heat maps of profile logarithm of odds (LOD) scores were
used to visualize the evidence for QTL in the context of
a multiple-QTL model. This is analogous to a display
technique used in Zeng et al. (2000): Each QTL was consid-
ered separately, and its position was allowed to vary, keep-
ing all other QTL fixed at their estimated positions. For each
possible position of the QTL under test, the LOD score com-
paring that multiple-QTL model to the model with the given
QTL omitted was calculated.

Source code, raw and processed data

All of the raw images, custom image analysis computer
code, quantified phenotype data, R/qtl input files, and
reduced QTL results are available for download at http://
phytomorph.wisc.edu/download/. These resources enable
repetition of the analyses presented here but, probably more
importantly, they enable computer vision scientists to extract
additional traits from the image sets and statisticians to de-
velop new methods for mapping phenotypes quantified with
high time resolution.

Results

The gravitropism dataset

The biological material studied here was a set of 162
recombinant inbred lines of A. thaliana derived from a cross
between the Cvi and Ler ecotypes (Alonso-Blanco et al.
1998) and a set of 92 near isogenic lines containing intro-
gressions of Cvi DNA in the Ler background. The seed stocks
used were the same previously studied by image analysis to
determine the size distributions and genetic architectures of
length, width, and area traits (Moore et al. 2013). The phe-
notype data are time series of root tip angles extracted from
sequences of grayscale digital images automatically acquired
at 2-min intervals during gravitropism and batch processed
on a HTCondor-managed high-throughput computing grid
(Thain et al. 2005). Figure 2A shows five images of a repre-
sentative root undergoing gravitropism for 8 hr. Each of the
6984 separate trials in this study consists of 241 frames that
form a time series. The average tip angle responses of the
two parental ecotypes and three example members of the
mapping population are shown in Figure 2B. Regardless of

Figure 1 Root tip angle determined by image analysis. (A) Grayscale
image of a representative root undergoing a growth response to a change
in the gravity vector, or gravitropism. Bar, 1 mm. (B) Binarized image of
the responding root. (C) Curvature values are calculated at each boundary
point along the root apex. The point of highest curvature is taken to be
the root tip. Color legend indicates curvature values in mm21. (D) A patch
centered at the root tip is subjected to principal components analysis.
The first eigenvector (black line) determines the tip angle relative to the
horizon.
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genotype, all roots reoriented by approximately 90� within 8
hr, although the time courses differed significantly. The set
of phenotype data obtained for this set of recombinant in-
bred lines is referred to as RIL1. A separate rearing and
harvest of the recombinant inbred lines including the paren-
tal accessions and a repeat of the phenotype measurements
from the next generation of seedlings produced the RIL2

dataset. In general, RIL2 responses were slower than RIL1
responses despite the genetic identity of the plants (Figure
2C). The same measurements were performed on the near
isogenic lines, the seeds of which were generated in the
manner of the second RIL generation, to produce the NIL
dataset (Figure 2D).

Analysis of variance

The variance attributed to additive genetic variation and
environmental variance in RIL1, RIL2, and NIL are plotted in
Figure 3. Additive genetic variance was initially low in all
populations but increased as the gravitropic response pro-
gressed, peaking 4 to 6 hr after gravistimulation (Figure
3A). Environmental contribution to total phenotypic vari-
ance exceeded the variance attributed to additive genetic
variation, developing mostly during the first few hours of
the response, especially in NIL (Figure 3B). These analyses
of variance are based on the differences between the aver-
age responses of genetically distinct lines.

Time-resolved QTL map

The mean tip angle at each of the 241 time points for each
genotype was used as the phenotype in 241 separate and
independent multiple-QTL modeling analyses. The result was
a highly time-resolved QTL map for each of the datasets
(Figure 4, A–C). LOD score is shown on a color-intensity scale
as a function of time (abscissa) and genome position (ordi-
nate). In RIL1 (Figure 4A), a total of eight loci, with a maxi-
mum of six loci at any given time, were detected during the
8-hr response. Two loci in particular were present during
a large portion of the response. The locus on chromosome
4 at 40.3 cM affected variation in the response from �0.5 to
6 hr past gravistimulation, and the other on chromosome 1 at
64 cM contributed from �3 to 8 hr. Some QTL were more
limited in duration. For example, shortly after 3 hr, a QTL
appeared on chromosome 3 at 44 cM and lost influence at
5 hr. This particular QTL illustrates a problematic feature of
treating the phenotype at one time point independent of the
next, namely that a QTL can abruptly disappear or shift po-
sition due to data at adjacent time points being best fit by
different QTL models.

RIL2 supported the selection of three loci as genetic
contributors to variation in the gravitropism response
(Figure 4B). Two loci contributed from 2 to 8 hr after grav-
istimulation, with the third locus on chromosome 3 at 17 cM
arising later to influence the response between 4 and 8 hr
after the start of the experiment. A locus on chromosome 4
at 40 cM was identified and displayed a similar time course
in RIL1 and RIL2 (Figure 4B).

Figure 4C shows that three or possibly four loci were sta-
tistically significant in NIL during the early and middle parts of
the response. The locus on chromosome 3 at 17 cM detected
throughout the first 6 hr of the response was also featured
prominently in RIL2, and in the “alternate” model centered
around 4 hr in RIL1. A second locus on chromosome 5 at 55
cM, influential from 3.5 to 5.5 hr after gravistimulation, was

Figure 2 Quantifying root tip angle during gravitropism generates
a time-course phenotype. (A) Representative series of images of a root
responding to gravity at 2-hr intervals. At the beginning of the experi-
ment, seedlings were rotated 90� such that the root tip was approxi-
mately horizontal to the gravity vector. By 8 hr after rotation, the root
had grown to reorient its tip parallel to the direction of gravity. Bar, 0.5
mm. (B–D) Tip angle development during gravitropism in the RIL1, RIL2,
and NIL datasets. The response of the Cvi parental line is shown by a black
line, Ler by an orange line, and the other lines indicate the responses of
representatives of the population of inbred lines (labeled A, B, and C).
Vertical bars indicate the standard error of the mean. For RIL1, n = 27, 28,
10, 10, and 18 for Cvi, Ler, RIL1-A, RIL1-B, and RIL1-C. For RIL2, n = 14,
18, 18, 11, and 12 for Cvi, Ler, RIL2-A, RIL2-B, and RIL2-C. For NIL, n = 32,
33, and 20 for NIL-A, NIL-B, and NIL-C.
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also apparent over the same time period in RIL1. NIL was the
only dataset to support a QTL on chromosome 2, located at 40
cM, which contributed to the variation in the response during
the first hour.

A function-valued approach

The analysis described above adjusted for the search across
QTL models but not for the search across time points.
Another shortcoming is that the selected model occasionally
abruptly changed between adjacent time points despite the
phenotype following a smooth curve across time. A simple
but effective approach to integrating information across time
points was devised to accommodate the high time resolution
in the phenotype data generated by the automated image
analysis. The method used a model comparison criterion
analogous to that of Manichaikul et al. (2009). It was initi-
ated by performing a genome scan, or single-QTL analysis,
at each time point to generate a 2D matrix of LOD scores
(genomic positions 3 time points). Figure 4, D–F shows the
results of these single-QTL analyses in the three populations.
For RIL1, strong support was obtained for loci on chromo-
somes 1 and 4 acting at different times (Figure 4D), while
for RIL2, loci affecting this response were predicted on chro-

mosomes 3 and 4 (Figure 4E). The locus on chromosome 4
was predicted to be at �40.3 cM in both RIL1 and RIL2. The
NIL population showed some support for a locus on the
proximal end of chromosome 4 and some support for loci
on chromosomes 3 and 5 (Figure 4F). The next step in the
method was to calculate the maximum LOD (MLOD) and
the average LOD (SLOD) at each genomic position across
time. Significance thresholds were obtained by a permuta-
tion test (Churchill and Doerge 1994), using the correspond-
ing SLOD or MLOD statistic. SLOD exhibits higher power to
detect QTL with effects across a large time interval, while
MLOD exhibits higher power to detect QTL with large
effects over a narrow interval. The MLOD or SLOD statistics
were used to derive a penalized LOD criterion, which
multiple-QTL analyses sought to maximize in a stepwise
search, starting with the first QTL at the position with the
highest MLOD or SLOD score. Additional QTL were added to
the model if the significance threshold was met. After selecting
the QTL model with the highest penalized LOD score, profile
LOD scores were derived to evaluate the evidence and local-
ization of each QTL, evaluating each time point in the 8-hr
response, individually: The position of each QTL was varied,
one at a time, and at each location for a given QTL, we
derived a LOD score comparing the multiple-QTL model
to the model with the given QTL omitted. Figure 4, G–I
presents these profile LOD scores, based on the model iden-
tified with the stepwise QTL analysis using the SLOD statis-
tic. In RIL1, a two-QTL model was identified using the SLOD
statistic, with loci on chromosomes 1 and 4 (Figure 4G), and
a two-QTL model with evidence of epistasis was predicted
using the MLOD statistic, with the same QTL on chromo-
some 4 and an additional one on the distal end of chromo-
some 3 (data not shown but presented for download). For
RIL2, the SLOD statistic predicted a three-QTL model, with
loci on chromosomes 1, 3, and 4 (Figure 4H), while the
MLOD statistic gave a four-QTL model, with two loci on
chromosome 1 and one locus on chromosomes 3 and 4 (data
not shown but presented for download). In the NIL dataset,
the SLOD statistic resulted in a two-QTL model with both
loci on chromosome 3, at 16.4 and 39.7 cM (Figure 4I).
Analysis of this population using the MLOD statistic found
both the two QTL on chromosome 3, as well as an additional
locus on chromosome 2 at 81.3 cM (data not shown but
presented for download). None of the loci identified by
the above methods were found in a QTL study of Arabidopsis
root skewing (the degree to which a seedling root axis devi-
ates from the gravity vector when grown on a vertically
maintained agar surface) that utilized the same germplasm
(Vaughn and Masson 2011).

Heritability

Analysis of variance was performed to calculate the herita-
bility (h2) due to the identified QTL across time in each
population, using both the stepwise QTL analysis results at
individual time points as well as the results achieved via
stepwise QTL analysis using the SLOD statistic. For RIL1,

Figure 3 Genetic and environmental contributions to variance. (A) The
proportion of the phenotypic variance attributed to the additive genetic
variation. (B) The environmental contribution to the phenotypic variance.
Orange, blue, and green lines indicate the RIL1, RIL2, and NIL popula-
tions, respectively.
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h2 ranged from a low of 10%, occurring at the initiation of
the gravitropic stimulus, to a high of 27% around 6 hr post-
gravistimulation using trait data from each time point (Fig-
ure 5A). Analysis of RIL1 with the SLOD statistic showed
a similar range in h2, from 5% to a high of 33% (Figure 5B).
The heritability calculated from the RIL2 population was
somewhat lower than RIL1, ranging from 8–24% and 5–23%
for analysis at each time point and via the SLOD statistic,
respectively (Figure 5, A and B). For the NIL population,
the measured heritability was less than that of the RIL1 and
RIL2 populations, with estimates of 3–15% from individual
time point data (Figure 6A) and 12–22% from the SLOD
statistic analysis (Figure 5B). The lower heritability of NIL
can probably be attributed to the lesser amount of genetic
variation present in these lines.

A four-QTL model

Independent analysis of the three datasets identified some
shared and some unique QTL. In an effort to consolidate the
results in a single analysis, loci at chromosome 1 at 64 cM
(1@64 cM), 3@17 cM, 4@40.3 cM, and 5@61 cM,
identified as contributors by stepwise QTL analysis at each
time point (Figure 4, A–C), were used to create a four-QTL
model that was evaluated in each of the three datasets.
Figure 6 shows plots of the effect on the tip angle resulting
from replacement of the Ler allele with the Cvi allele at the
indicated positions, i.e., the Cvi allele effect, as inferred from

the four-QTL model fit separately to each of the datasets.
Figure 6A shows that the Cvi allele at the 1@64 cM locus
was estimated to have a negative time-dependent effect on
the root tip angle in all three populations. The LOD scores
for this position (Figure 4, A–C) indicate strong support for
the negative effect of this allele in RIL1 and RIL2, peaking
around 5 hr. Locus 3@17 cM was also estimated to have
a negative effect on root tip angle, this time with NIL pro-
viding strong support, peaking about 4 hr into the response
(Figure 6B). The other two loci, 4@40.3 cM and 5@61 cM,
also showed a negative Cvi allele effect but with inconsistent
(Figure 6C) or little (Figure 6D) time dependence.

Discussion

Gravitropic signaling initiates in specific cells of the root
cap (Hashiguchi et al. 2013), resulting in a redistribution of
indole-3-acetic acid (IAA) flowing back shootward such that
a growth-inhibiting level of this auxin accumulates on the
lower side of the root (Spalding 2013). Slowing of cell ex-
pansion on the lower side drives downward bending, which
is first detectable within �15 min (Lewis et al. 2007; Miller
et al. 2007). The response time course in Arabidopsis seed-
ling roots depends on factors such as seedling age, the size
of the seed from which the seedling emerged, nutrient con-
ditions (Durham Brooks et al. 2010), and even on the pre-
vious generation’s culture environment (Elwell et al. 2011)

Figure 4 Time course of QTL develop-
ment. Magnitude of LOD score is dis-
played as color intensity as a function
of time. (A–C) Profile LOD scores for
models selected by stepwise QTL analy-
ses, considering each time point individ-
ually. For RIL1, (Tm, TiH, TiL) = (2.58,
3.41, 1.53); for RIL2, (Tm, TiH, TiL) =
(2.56, 3.44, 1.63); and for NIL, (Tm,
TiH, TiL) = (2.75, 2.40, 0.67). (D–F) Sin-
gle-QTL analysis results from RIL1, RIL2,
and NIL populations. Threshold for sig-
nificance of single QTL is 1.91 for RIL1,
1.99 for RIL2, and 1.91 for NIL. (G–I)
Profile LOD scores for the model se-
lected by stepwise QTL analyses using
the SLOD criterion. For RIL1, (Tm, TiH,
TiL) = (1.91, 2.41, 1.10); for RIL2, (Tm,
TiH, TiL) = (1.99, 2.62, 1.51); and for
NIL, (Tm, TiH, TiL) = (1.91, 2.40, 1.66).
The position of the loci on the y-axis is
shown as the cumulative position of the
five Arabidopsis chromosomes. Horizon-
tal lines indicate chromosome breaks.
The x-axis shows time in hours since on-
set of gravistimulation. All coordinates
whose LOD scores were not significant
are shown in white. Darker blue colors
indicate higher support for the loci.
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but, generally speaking, the bending speed increases during
the first 2 hr, peaks, then gradually slows as the tip angle
approaches the new vertical. The present study captured the
time course of this process across genetically structured pop-
ulations of Arabidopsis seedlings so that the dynamics of its
genetic architecture could be determined.

High-throughput computing advantages matched
technical needs of temporal QTL study

Automated image acquisition and feature extraction were
important contributors to the feasibility of this study but
were not sufficient for success. Also necessary was the
establishment of an automated high-throughput computing
(HTC) workflow. HTCondor software enabled batch pro-
cessing of raw images and statistical genetic modeling of the
quantified feature by matching jobs and available resources
in a distributed computing environment. Obtaining the
results presented in Figure 4, A–C alone entailed launching
21,700 jobs that consumed �5000 central processor unit
hours. Such work would probably not have been feasible
in the absence of such a computing infrastructure. Data
quality was also increased by adopting HTC because the
degree of throughput and automation increased the feasibil-
ity of larger sample sizes.

Comparison of the two methods of QTL analysis

The first of the two methods of searching for significant
QTL used in this study relied on automated stepwise QTL
selection of a model based on tip angle data at a single time
point, while the second method combined information from
all time points to choose a multiple-QTL model. The first
method is conceptually simpler, treating each time point
independently and separately as a new trait to map.
However, especially in the case of RIL1, the independent
treatment of time points produced occasional discontinuities
along the time axis as the selected QTL model jumped
between alternatives. The alternate QTL positions, for
example �4 hr on chromosomes 3 and 5 (Figure 4A), could
reflect genes that contribute to the response but without
sufficient strength to force their selection in each independent
modeling exercise. In the second method, the function-valued
approach, one model is chosen to represent the entire re-
sponse, leading to improved power to detect QTL and better
separation of linked QTL. The second approach is also more
conservative as it seeks to control for the search across time
points as well as the search across QTL models. When applied
to the two RIL datasets, both methods detected the QTL on
chromosomes 1, 3, and 4 (Figure 4). Replacement of Ler with
Cvi alleles at these loci had a negative effect on the root tip
angle (Figure 6) as did the Cvi allele at the weakly supported
QTL on chromosome 5, which was only detected with the
first method and only in RIL1 (Figure 4A).

Similarities and differences between RIL1 and RIL2

Independent rearings of the same set of recombinant inbred
lines created the seed stocks used to produce the RIL1 and
RIL2 datasets. Therefore, differences between the two
datasets cannot be due to genetic differences. Instead, en-
vironmental differences during the production of the seed
lots are the most probable causes of the differences between
RIL1 and RIL2 root responses. Variation in seed size and
shape within the two stocks were previously measured by
image analysis and subjected to statistical genetic analysis.
The seeds used to generate RIL2 were found to be signifi-
cantly larger than those that generated RIL1. Such maternal
environment effects on Arabidopsis seed size are known to
affect next-generation growth of seedlings including root
gravitropism (Durham Brooks et al. 2010; Elwell et al.
2011). Therefore, the QTL on chromosome 3 that is appar-
ent in RIL2 (Figure 4H) but only weakly and briefly or not at
all in RIL1 (Figure 4, A and G) may be a locus that affects
gravitropism only in certain seed-size contexts. However,
none of the seed size or shape QTL previously identified
(Moore et al. 2013) using the same seed stocks overlapped
with the root tip angle QTL mapped here.

Candidate genes

The 1.5-LOD support intervals calculated for each QTL
permitted consideration of whether or not any corresponded
to genes known to encode components of the gravitropism

Figure 5 (A) Heritability calculated via results from stepwise QTL analysis
at individual time points. (B) Heritability based on the chosen SLOD model
from each population. Orange, blue, and green lines indicate the RIL1,
RIL2, and NIL populations, respectively.
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mechanism, such as PIN2 auxin transporters (Chen et al.
1998; Müller et al. 1998), determinants of starch content
in the sedimenting statoliths (Caspar and Pickard 1989; Kiss
et al. 1989), and plastid outer envelope proteins (Stanga
et al. 2009), among others (Morita 2010; Baldwin et al.
2013).

The confidence interval of QTL 1@61 spans a region
approximately from gene AT1G21945 to gene AT1G22420.
One gene within this region is AUXIN UP-REGULATED F-BOX
PROTEIN2 (AUF2), which functions with the related AUF1
protein to regulate root growth responses to the hormones
cytokinin and auxin (Zheng et al. 2011). Mutating AUF1 and
AUF2 impairs both of the major auxin transport streams in
the root and makes root growth more sensitive to auxin
transport inhibitors (Zheng et al. 2011). Natural variation
at this genetic locus could potentially affect the gravitropism
time course.

The confidence interval for QTL 3@15 spans from
AT3G23980 to AT3G24400. No gene within this region is
known to function in gravitropism, hormonal control of root
growth, or other processes that could support a hypothesis
about how natural variation within it could affect the
phenotype measured here.

The confidence interval for QTL 4@40.3 extends from
approximately AT4G15080 to AT4G15396 and includes
ABCG30, a gene predicted to encode a membrane protein
belonging to the ATP-binding cassette (ABC) superfamily of
transporters (Verrier et al. 2008). Members of the B sub-
family of ABC transporters have been linked to IAA transport
(Noh et al. 2001) and subsequently shown to affect gravi-
tropism (Noh et al. 2003; Lewis et al. 2007), but only re-
latively recently have members of the G subfamily been

connected to auxin transport. Specifically, ABCG36 and
ABCG37 have a subcellular localization and an apparent
transport activity that leads to efflux from roots of indole-
3-butyric acid (Strader and Bartel 2009; Růžička et al.
2010), a compound that has intrinsic auxinic activity and
is believed to be a precursor of IAA (Strader and Bartel
2011). ABCG30, formerly known as PLEIOTROPIC DRUG
RESISTANCE 2 (PDR2), resides near ABCG36 and ABCG37
in the ABCG phylogenetic tree, and it is expressed specifi-
cally in roots (van den Brule and Smart 2002). Expression
in roots and a close sequence relationship with membrane
proteins now believed to function in auxin homeostasis
makes ABCG30 an interesting candidate for the cause of
phenotypic variation associated with QTL 4@40.3.

The genes within the confidence interval surrounding
QTL 5@61, covering loci AT5G16770 to AT5G17330, in-
clude MERISTEM-DEFECTIVE (MDF), which encodes a pro-
tein in the SART-1 family. MDF is expressed throughout the
plant and mediates root, shoot, and flower development
(Casson et al. 2009). Messenger RNA levels of PIN2 and
PIN4 are lower in mdf mutants, affecting the ability of the
root to achieve a normal auxin maximum in the meristem,
which may be how MDF functions to maintain meristematic
activity (Casson et al. 2009). The influence of MDF on mer-
istem activity does not make it a strong candidate for the
causative gene at this QTL because cell division is not
expected to play an important part during an 8-hr gravi-
tropic response. However, the effect of MDF on PIN2 expres-
sion makes it a very interesting candidate of causation. PIN2
mediates the shootward flow of auxin, which is an important
component of the mechanism that creates differential
growth between the upper and lower sides of the root

Figure 6 Time-dependent allele effects on root tip an-
gle during gravitropism. The four QTL found by step-
wise QTL analyses at each time point that were
common to at least two populations were added to
a model and the contribution of each locus was esti-
mated. Positive values indicate that substitution of
a Cvi allele at the indicated locus increases the tip
angle trait, while a negative value corresponds to the
Ler allele increasing the trait value. The 95% confi-
dence interval for the degree of the effect is displayed
as error bars. (A) Chromosome 1 at 64 cM. (B) Chro-
mosome 3 at 17 cM. (C) Chromosome 4 at 40.3 cM.
(D) Chromosome 5 at 61 cM.
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during gravitropism (Spalding 2013). Natural variation in
MDF may cause natural variation in PIN2 expression, and
thereby affect the strength of the shootward auxin transport
stream and the tropic responses that depend on it.

Adding a highly resolved time dimension to an analysis of
quantitative trait loci posed some significant technical
challenges met here by an emphasis on automated data
acquisition and HTC for data analysis and modeling, but it
also generates significant new insights and perspectives on
the genetic architecture of the process that gives rise to a
trait, rather than a trait itself. With image analysis becoming
more common in studies of plant biology, in scenarios ranging
from confocal microscopes to whole plants (Spalding and
Miller 2013), time may be an axis on many more QTL profiles
in the future.
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File S1 

A movie of a gravitropism response formed from a particular set of images recorded for this study.  
The movie was created from 241 images acquired at 2 minute intervals. 
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