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A B S T R A C T

The DCASE automated audio captioning challenge aimed to construct a model that generates captions
describing given audio. Our team developed a CNN14 encoder (pre-trained on AudioSet data) along with
a Transformer decoder model that ranked sixth place in the competition. Many teams utilized pre-trained
networks, and it was evident that more research into their utilization was required. This paper presented
comprehensive experiments conducted with various encoder networks for the proposed system, including
CNN10, CNN14 ResNet54, AST, VGGNet, and EfficientNet. The pre-trained networks of CNN10, CNN14,
ResNet54, and AST were trained on AudioSet data, while the pre-trained networks of AST, VGGNet, and
EfficientNet were trained on ImageNet data. The best outcomes were achieved when the pre-trained CNN10,
trained on AudioSet data, was utilized as an encoder with the Transformer serving as a decoder, and fine-tuning
applied. Moreover, a qualitative study confirmed that our model generates plausible captions for different types
of audio.
1. Introduction

In the field of computer vision, image captioning has garnered sig-
nificant attention. The objective is to generate a caption that accurately
describes the image from a given photograph. Similarly, in the audio
domain, research on audio captioning has been pursued with a similar
goal. Image captioning can be particularly helpful for individuals with
visual impairments, as it provides them with crucial information about
their surroundings (Makav & Kılıç, 2019). Likewise, audio captioning
can be utilized to provide a textual description of audio signals to those
who are deaf or hard of hearing. As captioning technologies continue
to evolve, they hold great potential for enhancing the quality of life
for individuals with disabilities. Recent research in audio processing
highlights the significance of recognizing and explaining nonverbal
sounds, rather than simply translating them into other languages, as
seen in closed captions for audiovisual content on streaming platforms
such as Netflix (Xu, Wu, & Yu, 2022). This paper aims to provide a
comprehensive overview of the current state and future prospects of
captioning technology in both computer vision and audio processing.

Automated Audio Captioning (AAC) is a system that uses machine
learning approaches to develop captions that explain the given audio
data, as shown in Fig. 1. For instance, when presented with the sound of
thunder or dripping rain, the AAC System generates the caption ‘Rain is
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pouring down while thunder is occurring.’ This fascinating subject has
been the focus of many researchers who participated in the Detection
and Classification of Acoustic Scenes and Events (DCASE) challenges
and workshops in 2020 and 2021, including (Chen et al., 2020; Han,
Yuan, Liu, Li, & Yang, 2021; Pellegrini, 2020; Perez-Castanos, Naranjo-
Alcazar, Zuccarello, & Cobos, 2020; Takeuchi, Koizumi, Ohishi, Harada,
& Kashino, 2020; Xu, Dinkel, Wu, & Yu, 2020). In the DCASE AAC for
2021, the Clotho v2 dataset (Drossos, Lipping, & Virtanen, 2020) was
used, which contains 6974 audio clips ranging from 15–30 s in length,
with 5 captions each consisting of 8–20 English words.

In the AAC problem for the DCASE 2020 competition, Drossos,
Adavanne, and Virtanen (2017) presented a baseline model using an
encoder–decoder structure. This architecture was widely used in AAC
design and involved a multi-layered, bi-directional Gated Recurrent
Unit (GRU) encoder and a multi-layered decoder. Takeuchi et al. (2020)
employed data augmentation, multi-task learning, and post-processing
using a Long Short-Term Memory (LSTM) decoder to achieve the best
results. Chen et al. (2020) proposed a pre-training stage for the encoder
before combining the Transformer decoder to create the second-best
model. Perez-Castanos et al. (2020) experimented with a Residual
Network (ResNet) encoder and an LSTM decoder with the gammatone
feature as an input. Pellegrini (2020) introduced the Listen–Attend
vailable online 5 June 2023
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Table 1
Top ten teams and their models for DCASE 2021 AAC Competition.

Authors Rank Encoder Decoder SPIDEr (Test)

Yuan et al. 1 CNN14, ResNet38, Wavegram-Logmel-CNN14 Transformer 0.310
Xu et al. 2 CNN10 LSTM 0.296
Xinhao et al. 3 CNN10 Transformer 0.294
Ye et al. 4 ResNet38 LSTM 0.280
Chen et al. 5 ResNet38 Meshed-memory Transformer 0.262
Won et al. 6 CNN14 Transformer 0.249
Narisetty et al. 7 Conformer, Wavegram-Logmel-CNN14 Transformer 0.236
Labbe et al. 8 CNN14 LSTM 0.221
Liu et al. 9 CNN10(from scratch) Transformer 0.184
Eren et al. 10 Wavegram-Logmel-CNN14 GRU 0.182
Fig. 1. Illustration of the Automated Audio Captioning system.

Spell (LAS) (Chan, Jaitly, Le, & Vinyals, 2015) architecture with a
listener encoder and speller decoder. Xu et al. (2020) utilized a Convo-
lutional Recurrent Neural Network (CRNN) encoder and a GRU decoder
with fine-tuning via reinforcement learning.

Researchers could utilize a large amount of audio data, such as
AudioSet (Gemmeke et al., 2017; Kong et al., 2019), to learn crucial
sound-related feature representations. Koizumi, Masumura, Nishida,
Yasuda, and Saito (2020) used a Transformer decoder and a pre-trained
VGGish model (Hershey et al., 2017), while Xu, Dinkel, Wu, Xie, and
Yu (2021) proposed pre-trained 10-layer Convolutional Neural Network
(CNN) and CRNN5 encoder networks with GRU decoder.

The use of external data was permitted in the DCASE 2021 AAC
competition. All of the top ten teams in the challenge employed models
combined CNN-based encoders with LSTM, GRU or Transformer de-
coders as shown in Table 1. Nine among them employed pre-trained
models from extensive audio data as their CNN-based encoders (Chen,
Zhang, Wang, & Deng, 2021; Han et al., 2021; Labbé & Pellegrini, 2021;
Mei et al., 2021; Narisetty, Hayashi, Ishizaki, Watanabe, & Takeda,
2021; Özkaya Eren & Sert, 2021; Won, Kim, Kwak, & Lim, 2021; Xu,
Xie, Wu, & Yu, 2021; Yang & Sijun, 2021; Ye, Wang, Yang, & Zou,
2021). Interestingly, all the nine teams used models in the Pretrained
Audio Neural Networks (PANNs) (Kong et al., 2020) as their pretrained
models. PANNs were 15 pre-trained audio classification models using
large-scale AudioSet data, including CNN10, CNN14, and ResNet38.

Han et al. (2021) employed 14-layer CNN, 38-layer ResNet, and
Wavegram-Logmel-CNN14 as encoders, along with a Transformer as
a decoder. Xu, Xie, et al. (2021) reported successful results through
2

the utilization of reinforcement learning with a CNN10 encoder and
GRU decoder. Chen et al. (2020) applied a ResNet38 encoder and a
meshed-memory Transformer as the decoder. This modification of the
Transformer was initially used for image captioning (Cornia, Stefanini,
Baraldi, & Cucchiara, 2020). The majority of the competing teams
employed PANNs as encoders, and the results were largely influenced
by the effectiveness of their usage. The question is whether there exist
better pre-trained networks than PANNs. Spectrogram, one of the audio
preprocessing techniques, can be viewed as a two-dimensional image
providing frequency and time-axis information. Consequently, even
though pre-trained weights ought to be applied to a domain similar
to the original data, pre-trained models from ImageNet can still be
expected to yield a good performance on audio domain (Palanisamy,
Singhania, & Yao, 2020). There are numerous pre-trained networks
available from the image domain, such as EfficientNet (Tan & Le,
2019) and VGGNet (Simonyan & Zisserman, 2014). The recently pro-
posed Audio Spectrogram Transformer (AST) (Gong, Chung, & Glass,
2021a) trained on AudioSet is also available. Therefore, in this paper,
we explore the application of a variety of pre-trained networks with
transfer learning to the AAC task, such as CNN14, ResNet54, CNN10,
EfficientNet, VGGNet, and AST. The key contributions of this paper are
summarized as follows:

• We present a novel system composed of a pre-trained encoder net-
work and a Transformer decoder that achieves high performance
on the Automated Audio Captioning (AAC) task 6.

• We conduct extensive experiments to compare the performance of
several pre-trained models of PANNs, including CNN14,
ResNet54, and CNN10. These models demonstrated excellent
performance in the AAC competition and also showed good
performance in the image domain.

• We show that the best performance is achieved in the scenario
where the pre-trained CNN10, trained on AudioSet, is utilized
as an encoder with the Transformer serving as a decoder, and
fine-tuning applied.

• We consider how the caption is generated from AudioSet consist-
ing of 527 labels. Our best model creates captions well to explain
the corresponding audio even if the word of the AudioSet label is
not in the caption.

This paper is organized as follows. Section 2 reviews relevant prior
work. Section 3 presents the proposed system for the AAC. Section 4
describes the dataset used and discusses the experimental results. In
Section 5, we draw conclusions and discuss potential future research
directions.

2. Related works

2.1. Image captioning and audio captioning

Previous research regarding captioning tasks was actively conducted
in the field of image captioning which generates sentences associ-
ated with the content of images (Vinyals, Toshev, Bengio, & Erhan,
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2015). Image captioning models are capable of automatically gener-
ating captions for an image. This task requires algorithms to not only
recognize the items in an image but also to capture and describe their
relationships in natural language. As a result, sequence-to-sequence
models are typically used, which employ an encoder to extract fea-
tures from the image and a decoder to generate a caption. In AAC,
many studies convert raw audio data into mel spectrogram and then
extract features from the mel spectrogram using an encoder. Image
and mel spectrogram feature extraction share many similarities, in that
an encoder extracts features from three-dimensional data consisting of
horizontal, vertical, and channels, which are then passed to a decoder
that acts as a text generator. The state-of-the-art models for image
captioning are as follows: one that employs a Faster region-based
convolutional neural networks (Faster R-CNN) model with top-down
attention as an encoder and an LSTM structure as a decoder to create
sentences (Anderson et al., 2018), and another that uses a Meshed-
Memory Transformer model, which has a memory-augmented encoder
and a meshed decoder (Cornia et al., 2020). For audio captioning, we
also utilize the encoder–decoder structure, which involves an encoder
that converts audio into a latent embedding and a decoder that acts as
a text generator.

2.2. Transfer learning

Transfer learning is a process of utilizing the features learned from
one domain of data to another related domain (Chollet, 2017). For
instance, a pre-trained network from vast ImageNet data can be used
to create a classification model for classifying monkeys, dogs, cats and
birds.

The steps for transfer learning can be outlined as follows: (1) Take
layers from a pre-trained model. (2) Make the weights of layers non-
trainable. (3) Add some trainable layers on top of the non-trainable
layers to connect the pre-trained network and the output layer for
solving the problem. (4) Train the weights of newly added trainable
layers. (5) Make some last non-trainable layers trainable and retrain
the trainable weights with a small learning rate (Chollet, 2017). It
is observed that transfer learning is especially useful when the size
of training data is small. Deep learning models are susceptible to
overfitting when the size of training data is small. However, pre-trained
networks which have been trained on a vast amount of data are capable
of avoiding overfitting even with limited training data.

Neyshabur, Sedghi, and Zhang (2020) studied how transfer learning
can lead to good performance and can perform well on any layer of the
network, and found that the success of transfer learning depends on
the latter layer. Li, Grandvalet, and Davoine (2020) observed that the
use of L2 penalty in pre-trained models is key to achieving good per-
formance in transfer learning. Guo et al. (2019) proposed TransTailor,
a type of pruning technique, to reduce FLoating point Operations Per
Second (FLOPS) and improve accuracy as a way to resolve structural
discrepancies between a pre-trained model and a model used in a target
task during transfer learning.

Recently, many studies implemented transfer learning in the au-
dio domain. Similar to the utilization of pre-trained models trained
on ImageNet data in the image domain, pre-trained models trained
on AudioSet data were often utilized in the audio domain. PANNs
and VGGish, both trained on AudioSet data, are two commonly em-
ployed pre-trained networks. Therefore, we used a pre-trained network
through transfer learning in the AAC task.

2.3. Transformer

Regarding sequence modeling such as language modeling and ma-
chine translation, recurrent neural networks, particularly LSTM and
GRU, were renowned as state-of-the-art methodologies
(Chung, Gülçehre, Cho, & Bengio, 2014; Hochreiter & Schmidhuber,
1997). However, it is known that RNN has a problem with long-term
3

dependency. Even though the long-term dependencies are memorized
using a state vector in LSTM and GRU, sequential computing still has
inherent constraints in terms of speed (Vaswani et al., 2017). To address
the problem of sequential calculation, attention methods were studied.
As the title of the Transformer paper, ‘attention is all you need’, implies,
sequential computing was eliminated in the Transformer (Vaswani
et al., 2017). This model was initially introduced in 2017 at the
thirty-first conference on Neural Information Processing Systems and
achieved state-of-the-art in machine translation. As a result of the
parallel system, learning of Transformer is faster than networks based
on recurrent or convolutional layers. The attention mechanism in the
Transformer is used so that the model can learn global dependencies
between input and output.

Currently, models utilizing the Transformer are employed not only
in machine translation but also in other tasks. Additionally, new mod-
els such as Bidirectional Encoder Representations from Transform-
ers (BERT) (Devlin, Chang, Lee, & Toutanova, 2018), Detection with
Transformer (DETR) (Carion et al., 2020), and Generative Pre-Training
(GPT)-3 (Brown et al., 2020) using the Transformer as the base have
been actively developed. The Transformer structure has been applied
not only in natural language processing but also in various fields. For
instance, Akbari et al. (2021) utilized only the encoder portion of the
Transformer for multimodal tasks that involved audio, video and text,
achieving state-of-the-art performance on multiple downstream tasks
such as video action recognition, audio event classification, and image
classification. In the field of self-supervised learning, wav2vec 2.0 has
emerged, which improves the performance of existing wav2vec models
by applying Transformer structures that can mask current locations
and infer masked locations from surrounding data (Baevski, Zhou,
Mohamed, & Auli, 2020).

3. Proposed methods

The architecture of our proposed system is illustrated in Fig. 2.
We use a log-mel spectrogram to extract input audio features and a
pre-trained encoder network to generate context vectors. The Trans-
former decoder then takes the context vector as input and produces
the probability of the caption words as its output.

3.1. Encoder network

The CNN and ResNet models were pre-trained on AudioSet, while
the VGGNet and EfficientNet models were pre-trained on ImageNet. For
AST, two datasets were utilized for pre-training, leading to two versions
of pre-trained AST models. We employ a log-mel spectrogram to extract
the audio features of the input signal and a pre-trained encoder network
to generate the corresponding context vectors.

3.1.1. Pre-trained audio neural networks
Kong et al. (2020) proposed Pre-trained Audio Neural Networks

(PANNs) based on the AudioSet dataset, which contains 5000 h of
audio and 527 sound labels. The 15 pre-trained models, such as CNN10,
CNN14, ResNet38, and ResNet54, have been made accessible to the
public. Audio snippets in the dataset were obtained from YouTube
videos (Gemmeke et al., 2017). AudioSet is a repository of over 2
million audio recordings, which includes a balanced train dataset of
22,160 audio files, with at least 50 files for every sound class. The
evaluation dataset consisted of 20,371 audio files, each with a length
of 10 s, or padded with zeros if shorter. For audio-related applications,
the pre-trained models (CNN10, CNN14 and ResNet54) of multi-label
classification could be utilized, achieving state-of-the-art performance
for the 527 sound classes. The encoders of these models, CNN10,
CNN14 and ResNet54, are summarized in Tables 2–4, respectively, for
the AAC model, excluding the fully connected layers.
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Fig. 2. Overview of the proposed system for the AAC.
Table 2
CNN10 architecture.

CNN10

Log-mel spectrogram 64 mel bins
(3 × 3 @64,BN,ReLU)×2
Pooling 2 × 2
(3 × 3 @128,BN,ReLU)×2
Pooling 2 × 2
(3 × 3 @256,BN,ReLU)×2
Pooling 2 × 2
(3 × 3 @512,BN,ReLU)×2

BN: Batch Normalization.

Table 3
CNN14 architecture.

CNN14

Log-mel spectrogram 64 mel bins
(3 × 3 @64,BN,ReLU)×2
Pooling 2 × 2
(3 × 3 @128,BN,ReLU)×2
Pooling 2 × 2
(3 × 3 @256,BN,ReLU)×2
Pooling 2 × 2
(3 × 3 @512,BN,ReLU)×2
Pooling 2 × 2
(3 × 3 @1024,BN,ReLU)×2
Pooling 2 × 2
(3 × 3 @2048,BN,ReLU)×2

BN: Batch Normalization.

Table 4
ResNet54 architecture.

ResNet54

Log-mel spectrogram 64 mel bins
(3 × 3 @512,BN,ReLU)×2
Pooling 2 × 2
(bottleneckB@64)×3
Pooling 2 × 2
(bottleneckB@128)×4
Pooling 2 × 2
(bottleneckB@256)×6
Pooling 2 × 2
(bottleneckB@512)×3
Pooling 2 × 2
(3 × 3 @512,BN,ReLU)×2

BN: Batch Normalization; bottle-
neckB: Bottleneck Block.
4

3.1.2. Audio spectrogram transformer
In recent years, CNNs have been widely used for both audio and

visual tasks, due to their effectiveness in capturing features in a
specific geographic area (Gulati et al., 2020). However, the Trans-
former approach is also capable of capturing global aspects through
self-attention. Audio Spectrogram Transformer (AST) is an attention-
mechanism based classification model, which consists of a Transformer
encoder structure and does not rely on CNN. AST is similar in design
to Vision Transformer (ViT) (Dosovitskiy et al., 2020), yet modified to
cater to the audio classification task. This includes four modifications:
(1) AST utilizes single-channel spectrograms as input, while ViT uses
three-channel picture data; (2) ViT requires a fixed input size of either
(224, 224) or (384, 384), whereas AST allows for a variable input size
depending on the length of the audio spectrogram; (3) ViT does not
consider overlapping a patch size of (16, 16), whereas AST does con-
sider overlapping patch samples for positional embedding adaptation;
and (4) the last classification layer of ViT was discarded, and a new one
was initialized for AST (Gong et al., 2021a). We employ two versions
of the AST model pre-trained on AudioSet and ImageNet, respectively,
to extract features from audio signals, in our proposed AAC system.

AST has been pre-trained after extracting the feature to a size of
(128,1024) with log-mel spectrogram from the AudioSet. However,
when fine-tuning the pre-trained model with Clotho data, information
is lost when the time dimension is set to 1024 due to the relatively
longer playback time of Clotho data. To prevent such information loss,
we have modified the log-mel spectrogram with the size of (128,1024).
As shown in Fig. 3, this preprocessing involves dividing the mel spec-
trogram into odd-numbered and even-numbered sections in the time
dimension and stacking them in the frequency dimension to create a
log-mel spectrogram of (128,1024).

The AST model is employed as the encoder of the AAC model, as
shown in Fig. 4. A 16 × 16 patch size is selected with an overlap of
6 in both time and frequency dimensions. For the AAC encoder, the
special classification token [CLS], flatten layer, and Multi-Layer Per-
ceptron (MLP) layer are removed. The 2D patch samples are flattened
to serve as Transformer encoder input data. A linear projection layer
is then utilized to map to a 768-dimensional context vector and add
positional embedding to each patch embedding, to comprehend the
spatial structure. Finally, the output from the Transformer encoder is
sent to the Transformer decoder.

3.2. ImageNet pre-trained models

Models pre-trained on ImageNet data are frequently used in com-
puter vision applications (Hussain, Bird, & Faria, 2018). Audio spec-
trograms could be considered as 2D images, making them suitable for
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Fig. 3. Pre-processing of the mel spectrogram to match the input size for the pre-trained AST.
Fig. 4. Proposed AST encoder architecture.
use with these models. In our experiments, we employ VGGNet and
EfficientNet architectures, which are widely used for sound classifica-
tion (Gong, Chung, & Glass, 2021b; Qian, Bi, Tan, & Yu, 2016).

VGGNet is popular for its simple structure, which is composed of
repeating identical CNN blocks (Simonyan & Zisserman, 2014). An
important feature of VGGNet is that the filter size of all convolution
layers is 3. While using a small filter size, the depth of the model
is increased. VGG16 and VGG19 are the two most popular VGGNet
models, with 16 and 19 weight layers, respectively; we used the VGG16
pre-trained network.

Simply stacking layers deeply, as in VGGNet, is one type of model
scaling strategy. However, since the number of layers is manually
adjusted, this method is inefficient. On the other hand, EfficientNet,
based on MnasNet (Tan et al., 2019), is applied compound scaling.
This compound scaling approach updates the parameters based on the
relationship among model depth, width, and the resolution of the input
image.

For pre-trained weights of VGGNet and EfficientNet, the input di-
mension for channels is 3 due to the structure of the ImageNet dataset.
To match our input dimension, the channel is adjusted to 1.

3.3. Decoder network

Our Transformer decoder architecture is depicted in Fig. 5. A con-
ventional Transformer decoder with multi-head self-attention is used.
5

It is a two-layers Transformer with a hidden dimension of 192 with
four heads. Positional encoding is added to input embedding to give
positional information. Input to the decoder is a word embedding
feature obtained using the Word2Vec model. It then goes to the masked
multi-head attention module, which returns a query vector for the
following multi-head attention module. The encoder network output
is used to generate the key and value vectors for the attention module.
The Transformer block is iterated twice before feeding the output tensor
into a dense layer. Finally, a dense layer with a softmax activation
function generates probabilities of the caption words.

4. Experiments

4.1. Dataset and data pre-processing

Clotho v2 is an audio captioning dataset that includes five captions
for each CD-quality audio clip (44.1 kHz sampling rate, 16-bit sample
width) (Drossos et al., 2020). The audio snippets last between 15 and
30 s, and each caption has ranges from eight to twenty words. We use
this dataset in the experiment. It comprises 6974 audio samples, 34,870
captions, and approximately 4500 words. Clotho v2 is divided into four
parts: development, validation, evaluation, and testing. The captions
are accessible to the public solely for the development, validation, and
evaluation parts. Clotho v2 was selected for the DCASE 2021 AAC
competition due to its ability to handle various types of audio content.
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Fig. 5. Transformer decoder.

In this study, as in the DCASE 2021 competition, the Clotho v2 dataset
is utilized for model training and evaluation.

Three different types of input features are used for the study. The
first type is designed for PANNs pre-trained networks (specifically,
CNN10, CNN14, and ResNet54). The second and the third are for AST
models and ImageNet pre-trained models, respectively. In the case of
PANNs models, the 44.1 kHz recording is downsampled to 32 kHz,
and a log-mel spectrogram is extracted using the preprocessing codes
provided by PANNs.2 For the AST model, the 44.1 kHz recording
is downsampled to 16 kHz, and the audio waveform is transformed
into a log-mel spectrogram feature according to the procedure de-
scribed in Gong et al. (2021a). Finally, for the ImageNet pre-trained
models, a Hann window of size 1024 with 50% overlap is applied
to the 44.1 kHz audio data, and 64 log mel-band energies are ex-
tracted from each window frame. For the number of time windows,
we compute the maximum time window number, 𝑇 , across sample
datasets. To have a fixed size 𝑇 for the input feature on our model,
we pad zero to the time dimension. Additionally, we use the pre-
trained Word2Vec model (Mikolov, Chen, Corrado, & Dean, 2013) from
the Gensim python package (Rehurek & Sojka, 2010) for the word
embedding. The pre-trained Word2Vec embedding is fine-tuned using
caption sentences of the training set. We employ Spec Augment (Park
et al., 2019) as a data augmentation technique, where frequency and
time masks are randomly applied to the log-mel spectrogram to increase
the robustness of the training.

4.2. Experimental setup

4.2.1. Hyperparameters
In training, a batch size of 8 is utilized with a learning rate of 10−4.

L2 regularization is applied to all trainable parameters with factor 𝜆 =
10−6. The Adam optimizer (Kingma & Ba, 2015) is employed and the
Stochastic Weight Averaging (SWA) method (Izmailov, Podoprikhin,
Garipov, Vetrov, & Wilson, 2018) is applied to boost performance.
Dropout with a probability of 𝑃 = 0.2 is applied to the encoder and
Transformer decoder.

2 https://github.com/qiuqiangkong/audioset_tagging_cnn
6

4.2.2. Training procedure
There are three steps to the training procedure: (1) transfer learning

for the encoder network, (2) training the Transformer decoder net-
work while setting the weights of the pre-trained encoder network
non-trainable and using A Clotho data caption embedding through
Word2Vec, and (3) unfreezing the weights of the last convolution block
from the encoder network and fine-tuning the trainable weights using a
low learning rate. Six pre-trained networks are employed as the encoder
network in the transfer learning stage: CNN10, CNN14, ResNet54, AST,
VGG16, and EfficientNet. All five captions per audio are used as a
reference for metric and loss calculation. Beam search is utilized to
improve decoding performance in the inference stage, with a beam size
of 3. Word2vec embeddings are pre-calculated using 1000 epochs of
training. There are 30 epochs of training with a learning rate 0.0001
in step (2) the initial round of training, freezing encoder network
parameters. Finally, the last convolution blocks of pre-trained encoder
networks are unfrozen during the fine-tuning stage, which continues
for another 30 epochs with a learning rate 0.00001.

4.3. Evaluation metrics

We present our evaluation of the proposed system using the metrics
from the AAC task at the DCASE 2021 challenge. These metrics can be
divided into two categories: machine translation metrics and captioning
metrics. The machine translation metrics include Bilingual Evaluation
Understudy (BLEU)𝑛 (Papineni, Roukos, Ward, & Zhu, 2002), Recall-
Oriented Understudy for Gisting Evaluation (ROUGE)𝐿 (Lin, 2004),
and Metric for Evaluation of Translation with Explicit Ordering (ME-
TEOR) (Lavie & Agarwal, 2007). BLEU is a precision-based metric that
calculates a weighted geometric mean of an adjusted precision of n-
grams between anticipated and ground truth captions. The adjusted
precision calculation penalizes the geometric mean computation, favor-
ing short predicted captions and thus penalizing forecasted captions
that are shorter than the truth. BLEU𝑛 (𝑛 ∈ {1, 2, 3, 4}) refers to n-
grams with typical lengths of one to four (Chen et al., 2015; Papineni
et al., 2002). ROUGE𝐿, a statistic based on the Longest Common
Subsequence (Lin, 2004), is used to compute an F-measure between
the predicted and ground truth captions. The calculation of this F-
measure is oriented towards recall, using a value for the 𝛽 = 1.2 (Chen
et al., 2015; Lin, 2004). METEOR (Lavie & Agarwal, 2007) is a recall-
based statistic, where recall is weighted higher than precision (Chen
et al., 2015). It produces a harmonic mean of precision and recall of
caption segments between the expected and ground truth captions, and
uses word alignment to match exact words, stems of words, synonyms,
and paraphrases in the anticipated and ground truth captions. This
alignment is computed over segments of the captions while limiting
the number of chunks required.

The captioning metrics are Consensus-based Image Description Eval-
uation (CIDEr) (Vedantam, Lawrence Zitnick, & Parikh, 2015), Se-
mantic Propositional Image Caption Evaluation (SPICE) (Anderson,
Fernando, Johnson, & Gould, 2016), and a linear combination of these
two metrics called SPIDEr (Liu, Zhu, Ye, Guadarrama, & Murphy,
2017). CIDEr calculates a weighted sum of the cosine similarity be-
tween the predicted and ground truth captions for 𝑛-grams of length 𝑛 ∈
[1, 4]. Term Frequency Inverse Document Frequency (TF-IDF) weighting
is used to calculate the cosine similarity for each 𝑛-gram (Chen et al.,
2015; Vedantam et al., 2015). SPIDEr is a combination of CIDEr and
SPICE that examines the anticipated captions’ fluency and semantic
qualities.

4.4. Experimental results

Table 5 summarizes the experimental results of the proposed models
and the baseline system provided by the DCASE 2021 challenge. The
baseline model is a seq2seq model with three bi-directional GRU layers
as an encoder and two GRU layers as a decoder. Among the models

https://github.com/qiuqiangkong/audioset_tagging_cnn


Expert Systems With Applications 231 (2023) 120664H. Won et al.
Table 5
Score for model performance on evaluation data. The values with the best performance are shown in bold.

Model BLEU1 BLEU2 BLEU3 BLEU4 ROUGE𝐿 METEOR CIDEr SPICE SPIDEr

Baseline model

BGRU + GRU 0.378 0.119 0.050 0.017 0.263 0.078 0.075 0.028 0.051

From scratch

CNN14 + Transformer 0.466 0.262 0.156 0.092 0.309 0.137 0.208 0.087 0.148
ResNet54 + Transformer 0.459 0.253 0.152 0.084 0.312 0.131 0.182 0.085 0.133
AST + Transformer 0.209 0.104 0.058 0.031 0.084 0.209 0.202 0.090 0.146

Pre-trained with AudioSet

CNN14 + Transformer 0.550 0.361 0.244 0.160 0.375 0.172 0.401 0.121 0.261
CNN10 + Transformer 0.569 0.378 0.257 0.172 0.380 0.170 0.420 0.119 0.269
ResNet54 + Transformer 0.540 0.345 0.230 0.152 0.361 0.161 0.383 0.109 0.246
AST + Transformer 0.488 0.322 0.212 0.157 0.350 0.159 0.337 0.115 0.226

Pre-trained with ImageNet

VGGNet + Transformer 0.522 0.342 0.232 0.154 0.368 0.158 0.352 0.104 0.228
Efficientnet + Transformer 0.513 0.336 0.230 0.156 0.360 0.157 0.343 0.107 0.225
AST + Transformer 0.210 0.109 0.064 0.035 0.080 0.205 0.254 0.094 0.174
Fig. 6. Graphical presentation of model performance on evaluation data (machine translation metrics).
with a pre-trained encoder, the CNN10 and ResNet54 models trained on
AudioSet data outperform the VGGNet and EfficientNet models trained
on ImageNet data, with SPIDEr scores of 0.269 and 0.246, respectively.
The best performance across all models is achieved by the CNN10 pre-
trained encoder with a Transformer decoder, with a SPIDEr score of
0.269.

Models with pre-trained encoders (using AudioSet or ImageNet)
generally show superior performance with SPIDEr scores ranging from
0.174 to 0.269, compared to models trained with Clotho data (from
scratch), whose scores range from 0.133 to 0.148.

Figs. 6 and 7 demonstrate that models with good performance in
both machine translation metric scores and captioning metric scores
are arranged to the right. The models that use CNN10 and CNN14 pre-
trained networks on AudioSet data show the best performance in both
machine translation metric scores and captioning metric scores. Pre-
trained networks based on ImageNet data have slightly lower perfor-
mance, and models trained from scratch without pre-trained networks
perform the worst in terms of both machine translation and captioning
metrics.

4.5. Ablation studies

4.5.1. Fine-tuning
In the transfer learning process, it is known that the fine-tuning

step can improve performance by making some blocks of the encoder
network trainable and then re-training them with a small learning rate.
Thus, we experiment with fine-tuning the last one or two convolution
7

blocks of the CNN10 and ResNet54 models to check the effects of fine-
tuning. Table 2 shows the structure of the CNN10 embedding layers,
which consist of four convolution blocks. Each convolution block in the
CNN10 model consists of two 3 by 3 convolution layers. The ResNet54
embedding consists of six convolution blocks as shown in Table 4.
We unfreeze the last one or two convolution blocks of CNN10 and
ResNet54 in the experiment. Table 6 shows the results of comparing
a default from-scratch model (freezing all encoder networks) and two
fine-tuning models (unfreezing last one or two convolution layers)
using models with CNN10 and ResNet54 encoders. Both ResNet54
and CNN10 encoder models achieve better overall performance for
all scoring metrics by fine-tuning. Particularly, the CNN10 encoder
(unfreezing last two convolution layers) with a Transformer decoder
model achieved the best performance across all scoring metrics, includ-
ing BLEU, ROUGE, METEOR, CIDEr, SPICE and SPIDEr, with scores
of 0.569, 0.378, 0.257, 0.172, 0.380, 0.170, 0.420, 0.119 and 0.269
respectively. This suggests that fine-tuning through Clotho data is more
effective than simply fixing the pre-trained weights without fine-tuning,
as it was well-known.

4.5.2. Study on feature extraction methods
We explore three feature extraction methods: (1) the log-mel spec-

trogram, (2) the constant Q transform (CQT) spectrogram (Lidy &
Schindler, 2016), and (3) the gammatone filter spectrogram. The CQT
is a time–frequency representation with geometrically separated fre-
quency bins and equivalent Q-factors (ratios of center frequencies to
bandwidths) across all bins. The spectrogram of a gammatone filter is
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Fig. 7. Graphical presentation of model performance on evaluation data (captioning metrics).
Table 6
Evaluation scores for pre-trained encoder models on evaluation data with respect to the level of fine-tuning. The values with the best performance
are shown in bold. Transformer is used as the decoder for all the models.

Level of fine-tuning BLEU1 BLEU2 BLEU3 BLEU4 ROUGE𝐿 METEOR CIDEr SPICE SPIDEr

ResNet54

Without fine-tuning 0.540 0.345 0.230 0.152 0.361 0.161 0.383 0.109 0.246
Unfreezing last 1 block 0.545 0.360 0.244 0.164 0.366 0.166 0.393 0.111 0.252
Unfreezing last 2 blocks 0.549 0.358 0.239 0.157 0.366 0.168 0.397 0.117 0.257

CNN10

Without fine-tuning 0.511 0.332 0.225 0.149 0.360 0.155 0.356 0.108 0.232
Unfreezing last 1 block 0.549 0.348 0.227 0.142 0.370 0.169 0.353 0.113 0.233
Unfreezing last 2 blocks 0.569 0.378 0.257 0.172 0.380 0.170 0.420 0.119 0.269
Table 7
Evaluation scores of CNN14 + Transformer model using three different types of spectrogram on evaluation data. The values with the best
performance are shown in bold.

Type of spectrogram BLEU1 BLEU2 BLEU3 BLEU4 ROUGE𝐿 METEOR CIDEr SPICE SPIDEr

Log-mel 0.451 0.275 0.172 0.100 0.318 0.133 0.197 0.087 0.142
CQT 0.436 0.288 0.191 0.115 0.339 0.132 0.222 0.090 0.156
Gammatone 0.467 0.312 0.215 0.142 0.358 0.148 0.306 0.096 0.201
created by decomposing the input audio signal into the time–frequency
domain to use a bank of gammatone filters, then downsampling the
filter-bank replies along the time dimension (Ayoub, Jamal, & Arsalane,
2016).

We compare the performance of the CNN14 + Transformer model
using these three features without using transfer learning, as there are
no pre-trained models with CQT and gammatone features available.
Table 7 shows the performance results. In most metrics, the model
employing the CQT spectrogram outperforms the model utilizing the
log-mel spectrogram, except for BLEU1 and METEOR. The model using
the gammatone spectrogram, however, outperforms the other two mod-
els in all evaluation metrics. If a pre-trained model with the gammatone
spectrogram is available, we may be able to get even better results.

4.5.3. Processing embedding matrix in AST
The pre-trained weights provided by AST are learned through a

log-mel spectrogram of (128,1024) as explained in Section 3.1.2. We
consider the following methods to change the shape of the log-mel
spectrogram and conduct an experiment to compare the effect on the
performance of the model:

• Simple cut and paste: We attempt to resize the existing log-mel
spectrogram from (64, 2048) to (128, 1024) by performing the
following steps. Initially, the log-mel spectrogram has a size of
(64, 2048). We divide the time dimension in half, resulting in
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two (64, 1024) sized spectrograms. Then, we concatenate them in
the frequency dimension, resulting in a (128, 1024) dimensional
feature map.

• Time preserving cut and paste: There is a risk of losing tem-
poral information when using the above resizing method. As
illustrated in Fig. 3, the log-mel spectrogram is divided into
odd-numbered sections and even-numbered sections in the time
dimension and stacked in the frequency dimension to make a
log-mel spectrogram size of (128,1024)

Table 8 shows the results of both processing methods for AST
embedding. In all evaluation metrics, the time-preserving cut and paste
method works better than the simple cut and paste method in terms of
the model performance.

4.6. Qualitative results

4.6.1. Analyzing predicted captions
Fig. 8 displays the results of the proposed CNN10 (pre-trained using

AudioSet) + Transformer model on the Clotho dataset. The generated
captions were usually semantically similar to the answer captions,
indicating satisfactory performance. However, there were occasions
where the model mis-predicted captions. For example, for the fourth
caption, ‘Water spraying against a surface and dripping in the back-
ground,’ the model predicted ‘A shower is running with water in the
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Table 8
Evaluation scores of AST + Transformer model using two different feature processing methods on evaluation data. The values with the best
performance are shown in bold.

Feature processing method BLEU1 BLEU2 BLEU3 BLEU4 ROUGE𝐿 METEOR CIDEr SPICE SPIDEr

Simple cut and pasting 0.377 0.251 0.194 0.145 0.301 0.131 0.309 0.101 0.205
Time preserve cut and pasting 0.488 0.322 0.212 0.157 0.350 0.159 0.337 0.115 0.226
Fig. 8. Examples of answer and predicted caption.
background,’ which might not be the exact answer caption. However,
the sound of water being sprayed through the shower could be heard
in the audio corresponding to the caption, indicating that the predicted
caption is also legitimate. For the fifth answer caption, ‘A mechanical
noise is whirring along with people chatting in the room,’ our model
completely mis-predicted the caption as ‘A group of frogs are making a
lot of noises.’ Although the actual audio corresponding to the caption
sounded similar to the frog’s noisemaking, the predicted caption was
not accurate. The loss and SPIDER scores for these results are also
displayed in Fig. 8.

Overall, our CNN10 + Transformer model outputted captions that
were semantically similar to the answer captions, although there were
cases where the predicted captions were different from the actual
answer captions. In such cases, however, the predicted captions were
still often meaningful.

4.6.2. Evaluation on a real world sound data
We evaluated the performance of our AAC model on the AudioSet

dataset. The AudioSet dataset consists of 527 classes (Gemmeke et al.,
2017) and the captions were generated using our proposed CNN10
+ Transformer model for five sample audio data from five differ-
ent classes. The following is the audio categories, along with their
generated captions:

• Rain — A heavy rainstorm is falling heavily and hitting the
ground

• Bird — Birds are chirping and singing in the background
• Water — A person is washing dishes in a bucket of water
• Train, Rail transport — A train is passing by a train station
• Car, Vehicle — A motorcycle is revving its engine and then

speeding up

The five classes selected above overlap the top 30 most frequently used
words in captions of the Clotho data. As such, the presence of several
similar words indicates that our model is able to create appropriate
captions by listening to the audio corresponding to the labels.

To evaluate the performance of our model on audio data that was
not included in the Clotho dataset, we generated captions for five
samples that contain words that were not present in the Clotho dataset.
The results were as follows:
9

• Plucked string instrument — A person is playing a guitar
• Female speech — A woman is talking
• Bass drum — A person is playing a drum while music is playing
• Cock-a-doodle-doo — A variety of birds are chirping and whistling

loudly

There are labels such as bass drum and plucked string instrument
in the AudioSet, and they are classified by those labels. However,
the captions of the Clotho data did not provide this level of detail.
Nevertheless, the captions generated by our AAC model still contain
words such as drum and guitar, indicating that the model is able
to generate meaningful captions even with a limited vocabulary. To
further improve the accuracy of the model, more diverse audio and
caption data could be used for training.

We were able to gain some insight into AAC tasks with these qual-
itative results. The challenge of being able to accurately differentiate
between similar sounds, such as mechanical noise and frog’s noise,
was still an issue to be addressed. If an audio captioning system was
implemented for the deaf community, such a problem could lead to
disastrous outcomes. Therefore, our goal is to develop a system that
can clearly distinguish environmental sounds, despite the existence of
many similar sounds in the real world.

The above qualitative results with the corresponding audio are
publicly available via our YouTube channel.3

5. Discussion

5.1. Real world use case of AAC

Recent research in the audio domain has highlighted the importance
of not only translating non-voice sounds into other languages, but also
of identifying and explaining them. This is analogous to closed captions
in audiovisual resources from streaming platforms such as Netflix (Xu
et al., 2022). AAC technologies can be used to facilitate deaf individuals
by providing a text interpretation of audio signals in their environment.
As AAC technologies become more advanced, they can provide more
convenient services, such as assistive robots for deaf people and more
dynamic closed captions from streaming platforms.

3 https://youtu.be/6Qxa7iD1juw

https://youtu.be/6Qxa7iD1juw
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5.2. Why CNN10 and CNN14 encoders worked better?

In our study, pre-trained models from AudioSet and ImageNet data
were imported through transfer learning and demonstrated good per-
formance. Of the pre-trained models, CNN10 and CNN14 models per-
formed exceptionally well in comparison to ResNet54, AST, CNN10,
and CNN14. This was because deep models that worked well in the
image domain did not necessarily perform well in the audio domain,
as they tended to lose frequency-wise information while stacking many
layers (Kim, Chang, Lee, & Sung, 2021; Koutini, Eghbal-zadeh, & Wid-
mer, 2021). Thus, a model design that considers the receptive field
is necessary (Koutini et al., 2021). The superior performance of the
CNN10 and CNN14 models can be attributed to their more appropriate
receptive field.

5.3. Future work

For further research, there are a number of topics to be considered.
For instance, creating a training dataset by adding captions to numer-
ous and diverse voices, such as the Clotho dataset, requires a lot of time
and effort. To address this, studies involving self-supervised learning or
weakly supervised learning, which require less data labeling, could be
conducted. Additionally, while this paper focused on log-mel spectro-
grams as a feature, research into more diverse features may also be
beneficial.

6. Conclusion

This paper presented the results of our team’s participation in the
AAC Task of the DCASE 2021 competition. We explored the use of
external data by proposing an encoder pre-trained on the AudioSet
data, along with a transformer decoder. Additionally, we evaluated
several pre-trained encoders (AST, ResNet, VggNet, CNN, and ResNet)
on the task. Furthermore, we analyzed the real-world use case of AAC
through qualitative analysis.

Our results showed that the models using pre-trained encoders
outperformed those using Clotho data from scratch, with SPIDER scores
ranging from 0.174 to 0.269. Furthermore, we found that pre-trained
networks based on AudioSet outperformed models based on ImageNet,
with SPIDER scores ranging from 0.226 to 0.269. The CNN10 + Trans-
former model, pre-trained with AudioSet, achieved the best results
across 7 out of the 9 evaluation metrics, with a SPIDER score of
0.269. Additionally, the CNN14 encoder (pre-trained with AudioSet)
and ResNet54 encoder (pre-trained with AudioSet) models with the
Transformer decoder achieved the second and third highest scores,
respectively. Upon adaptation of pre-trained encoders, our fine-tuning
strategy yielded superior performance compared to the baseline, with
a SPIDER score improvement from 0.232 to 0.269 for the CNN10 +
Transformer model. Qualitatively, the AAC model generated satisfac-
tory captions for general audios. In addition, one limitation was the
lack of the use of unlearned words. To further enhance its predictive
capability, It would be better if the model is trained on a larger amount
of data that covers a wider range of situations.
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