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Abstract—The voice assistant market is overgrowing, and
mainstream services like Bixby (Samsung), Alexa (Amazon), and
Siri (Apple) are quickly being upgraded to support advanced
commands. Such capabilities make them lucrative targets for
attackers to exploit. Voice spoofing attacks involve recording
voice commands of a target victim and simply replaying them
through a loudspeaker. The “2019 Automatic Speaker Verifi-
cation Spoofing And Countermeasures Challenge” (ASVspoof)
competition aims to facilitate the design of highly accurate voice
spoofing attack detection systems. However, most of the presented
models do not take frequency-level modeling into account in their
modeling architecture and do not consider model complexity. To
design a light-weight system with frequency-level modeling, we
propose two systems: 1) Double Depthwise Separable (DDWS)
convolution and 2) BC-ResNet with max feature map (MFM)
activation (BC-ResMax). We evaluate the accuracy by equal error
rate (EER) using the ASVspoof 2019 dataset. Our single models
of parallel DDWS, sequential DDWS, and BC-ResMax model
achieved spoofing attack detection EER of 2.63%, 2.08% and
2.59% in the LA dataset, and 0.47%, 0.63% and 0.49% in the
PA dataset, achieving comparable performance with other top
ensemble systems from the competition. Furthermore, parallel
DDWS, sequential DDWS, and BC-ResMax used only 45K, 28K
and 29K numbers of parameters which are far fewer than
existing models.

I. INTRODUCTION

With the rapid growth of voice-related technologies, voice
assistants now support security- and privacy-critical com-
mands such as making purchases or controlling smart televi-
sions. Such capabilities allows attackers to abuse the services
to achieve lucrative targets. Voice spoofing attacks involve
recording a target victim’s voice and simply replaying them
through an electronic speaker to bypass any voice biometric-
based authentication service. One real funny event would be
the wrong dollhouse orders from Amazon Echo. TV anchor
said live on-air, ‘Alexa, order me a dollhouse.’ Amazon
Echo ordered dollhouses in many American households after
‘hearing’ TV presenter talking. We could have prevented this
accident if we had a good voice spoofing detection system.

Two main voice spoofing attack scenarios are Physical
Access (PA) attacks and Logical Access (LA) attacks. The PA
attacks are simple replay attacks that record the user’s voice
and play it back. The LA attacks include text to speech (TTS)
attacks and voice conversion (VC) attacks. In the TTS attacks,

the attacker collect lots of victim’s voice samples and train the
victim’s voice using Google’s Tacotron or Baidu’s Deep Voice
[1], [2].

Lots of competitions such as AVspoof 2015, ASVspoof
2015, ASVspoof 2017, ASVspoof 2019, and ASVspoof2021
were conducted to facilitate the design of highly accurate
voice spoofing detection systems [3], [4], [5], [6], [7]. Many
methods converted voice into a two-dimensional spectrogram
arrangement of frequency and time, and then applied deep
learning or machine learning methods [8], [9], [10], [11]. The
Speech Technology Center (STC) applied the LCNN model
to the spectrogram feature, showing that the Convolutional
Neural Network (CNN) based model works well with the
spectrogram feature, ranking first in 2017 and second in 2019
(in PA data) [8], [12], [13]. However, CNN-based models
have a location invariance property and, due to this, frequency
magnitude information in a spectrogram image gets obscured.
Many existing CNN-based spoofing detection systems have
not been sufficiently modeled for frequency-related informa-
tion.

On the other hand, modeling for two-dimensional spectro-
grams that reflect frequency and time information has been
attempted for other audio classification tasks such as acoustic
scene classification and musical genre classification [14], [15],
[16], [17]. Pons et al. (2016) experimented 1 by n and n by
1 convolutions for frequency- and temporal-related modeling
[14]. Koutini et al. (2021) demonstrated that the appropriate
receptive field size within a certain range should be maintained
to make a better model [15], [18]. In the Detection and
Classification of Acoustic Scenes and Events (DCASE) 2020
challenge on Acoustic Scene Classification (ASC), the best
team proposed trident architecture that divides frequency level
features into three parts [16]. In the DCASE 2021 challenge
on ASC, the best team used Broadcasted Residual Network
(BC ResNet) that processes frequency-related and temporal
features separately in their residual network design [17], [19].

Other essential issues in the deep learning model are the
latency and model complexity requirements imposed by real-
life businesses. Due to users’ timely response expectations
and exploding server cost issues, businesses typically require
model sizes to be less than a few megabytes (considering on-
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device deployment scenarios) and detection (prediction) time
to be less than a few ms. MobileNet and MobileNet2 are
proposed to alleviate these issues [20], [21].

This paper experimented with two light-weight CNN-based
neural network architectures that account for frequency in-
formation by using temporal depthwise convolution and fre-
quency depthwise convolution: 1) Double Depthwise Separa-
ble (DDWS) convolution and 2) BC ResNet with max feature
map (MFM) activation (BC-ResMax). Using the constant Q
transform (CQT) feature, parallel DDWS, sequential DDWS,
and BC-ResMax models achieved EERs of 2.63%, 2.08%
and 2.59% in the LA set, and achieved EERs of 0.47%,
0.63% and 0.49% in the PA set. These results are comparable
with other top-performing systems in the ASVspoof 2019
competition. Moreover, parallel DDWS, sequential DDWS,
and BC-ResMax models utilized only 45K, 28K, and 29K
numbers of parameters which are far fewer parameters than
existing models.

II. METHODOLOGY

A. Feature Engineering

In audio analysis, rather than using a raw audio form of a 1D
array, it is widely used to analyze audio by converting it into
2D spectrogram data of frequency and time. Two of the most
commonly used spectral features in the ASV2019 competition
are Short Time Fourier Transform (STFT) and Constant Q
Transform (CQT) [6]. After a few trials and observing model
accuracy, we detected that CQT was more compatible with the
proposed model, indicating superior model accuracy. There-
fore, the CQT feature was used to optimize the accuracy of
the models .

CQT [22] searches the audio signal in its time-frequency
representation by dividing the signal into shorter frames and
analyzing the audio in the frequency domain. In addition, CQT
is known to be more advantageous than the Fourier transform
for processing audio because the frequency axis is converted
into logarithmic units and the resolution is variously processed
for low frequencies with low resolution and high frequencies
with high resolution according to each frequency.

The length of the audio varies from sample to sample.
Therefore, the sample length is set to 9 seconds. Samples
longer than 9 seconds are used only for the first 9 seconds, and
samples shorter than 9 seconds are repeated to fill 9 seconds.
The librosa package [23] was used to extract CQT features,
and the bin size was set to 120 and the minimum frequency
was set to 1 .

B. Double Depthwise Separable Convolution

Depthwise Separable Convolution consists of two separate
layers, depthwise convolution and 1×1 pointwise convolution.
Depthwise convolution performs filtering per each channel of
input, and then 1×1 pointwise convolution gathers the filtered
feature maps by using a linear combination of the filtered
feature maps[20], [24]. Therefore, input features are handled
separately by considering 3D tensors in spatial and in-depth.

(a) Parallel DDWS ResBlock

(b) Sequential DDWS ResBlock

Fig. 1. DDWS ResBlocks

We introduce a variant of Depthwise Separable Convolution,
which we call ‘Double Depthwise Separable (DDWS) Con-
volution’. We use two distinct depthwise convolutional layers,
temporal and frequency depthwise convolutions. The temporal
depthwise convolution uses 1 × k1 kernel and frequency
depthwise convolution uses k2 × 1 kernel, instead of using
a depthwise convolution of k2 × k1 kernel. Then, with the
following pointwise convolutional layer, DDWS convolution
can build features by considering each dimension of a 3D-
tensor separately.

We had two different ways of experiments of how to locate
two depthwise convolutional layers. One way is to make two
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streams of depthwise convolutional layers and then concate-
nate the outputs along the channel axis. The other way is to
make a sequential order of two depthwise convolutional layers,
locating frequency depthwise convolutional layer followed by
temporal depthwise convolutional layer. We call the former
‘Parallel DDWS’ and the latter ‘Sequential DDWS’.

1) Parallel DDWS ResBlock: Parallel DDWS ResBlock
is defined in Figure 1(a). Let x be an input of the
block. We define f1 and f2 to be temporal and frequency
depthwise convolutions followed by Subspectral Normaliza-
tion (SSN) [25], respectively. Then, we define fP (x) =
Swish(concat(f1(x), f2(x))) where the concatenation is per-
formed along the channel axis and Swish is a swish activation
function [26]. Note that it is necessary to apply zero-padding to
make the spatial dimension of outputs of f1 and f2 the same.
We define g to be a composite of pointwise convolution, ReLU
activation, and spatial dropout. Then, the Parallel DDWS
ResBlock is computed as

y = x+ g(fP (x)).

We call the block which is computed as above a normal
block. We also define a transition block which is applied
when the input and output channel sizes are different. For the
transition block, we use an additional pointwise convolution
in the beginning of the block to change the number of
channels and to keep the spatial resolution same. If we define
a function h which is a composite of 1× 1 convolution, batch
normalization, and ReLU activation, then the transition block
for Parallel DDWS ResBlock is computed as

y = h(x) + g(fP (h(x))).

2) Sequential DDWS ResBlock: Sequential DDWS Res-
Block is defined in Figure 1(b). This time, two depthwise
convolutions are applied sequentially. We define f1 to be
a composite of temporal depthwise convolution, SSN, and
a swish activation, and f2 is defined to be a composite of
frequency depthwise convolution, SSN, and ReLU activation.
Then the normal block of Sequential DDWS Resblock is
computed as

y = x+ g(f1(f2(x))).

For the transition block of Sequential DDWS ResBlock, we
applied the same modification, and it is computed as

y = h(x) + g(f1(f2(h(x)))).

C. BC-ResMax

Fig. 2. Broadcasted residual block.

In this subsection, we proposed to use Broadcasted residual
block with MFM (BC-ResMax block), which is a modification
of Broadcasted Residual block (BC-ResNet block) [17], [19].
We combined the idea of a MFM from LCNN with BC-ResNet
[27].

Figure 2 shows the structure of broadcasted residual block.
Again, we consider both temporal and frequency depthwise
convolutions, which are contained in the functions f1 and
f2 in Figure 2, respectively. However, the key difference is
that an average pooling is applied along the frequency axis.
Thus, ignoring the channel dimension, the temporal depthwise
convolution is applied on 1D temporal features. Finally, we
have a broadcasting layer (BC) to reconstruct 2D features with
frequency and temporal dimension.

Fig. 3. Max feature map.

MFM used in LCNN is an activation function that takes the
maximum value among the same location in two output feature
maps with the same dimension (as shown in Fig. 3). This
process improves the robustness of the model, has the effect of
becoming lighter through filter selection, and is known to work
well in detecting voice spoofing attacks [8], [12]. Thus, we
used MFM as an activation function of a frequency depthwise
convolution layer.

Figure 4 shows the structure of our proposed Broadcasted
residual block with MFM (BC-ResMax block). Let x be an
input of the block. We define f2 to be a frequency depthwise
convolution followed by MFM and SSN, and f1 to be a
temporal depthwise convolution followed by SSN and swish
activation. We again define g to be a pointwise convolution
followed by ReLU and spatial dropout. Then, the normal block
is computed as

y = x+BC(g(f1(avgpool(f2(x))))),

where the average pooling and BC are performed along the
frequency axis.

For the transition block of BC-ResMax block, we applied
the same modification,

y = h(x) +BC(g(f1(avgpool(f2(h(x)))))),

where h(·) is a 1× 1 convolution followed by Batch normal-
ization and ReLU activation.

D. Model Architecture

The entire model architecture comprising of five normal
blocks and four transition blocks is described in Figure 5.
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Fig. 4. BC-ResMax Block

We define parallel DDWS model, sequential DDWS model,
and BC-ResMax by putting normal and transition blocks of
parallel DDWS ResBlocks (shown in Figure 1(a)), sequential
DDWS ResBlocks (shown in Figure 1(b)), and BC-ResMax
blocks (shown in Fig. 4), respectively.

The CQT feature of an audio data is an input feature of the
model. An input is first applied to a convolutional layer with 32
filters followed by MFM activation which outputs 16 feature
maps. Then, 2×2 max pooling, a normal block, and 2×2 max
pooling is applied. Through 4 transition blocks, the number of
filters is increased from 16 to 24, 32, 48, and 64, and a normal
block is applied after each transition block. Each time it passes
through the normal block, max pooling is applied to adjust
the size of the data and to reduce computational resources.
A global average pooling layer follows the last max pooling
block. We then have a dropout layer, and the final layer is
a dense layer with two units which outputs a result using a
softmax function to model binary outcome.

III. EXPERIMENTS

A. Experimental Setup

For the evaluation, we utilized the LA and PA data from
ASVspoof 2019 competition [6], each of which contains a
training set, a development set, and an evaluation set. For
the LA set, the training, development, and evaluation sets
contain 2, 580 bona fide and 22, 800 spoof utterances, 2, 548
bona fide and 22, 296 spoof utterances, and 7, 355 bona fide
and 63, 882 spoof utterances, respectively. For the PA set, the
training, development, and evaluation sets contain 5, 400 bona

Fig. 5. Model architecture.

fide and 48, 600 spoof utterances, 5, 400 bona fide and 24, 300
spoof utterances, and 18, 090 bona fide and 116, 640 spoof
utterances. We trained our models using only the training sets
and evaluated the trained models on the development sets and
evaluation sets.

To measure the detection accuracy, we primarily used equal
error rate (EER), following the rules from the ASVspoof 2019
competition. The misclassified error rate for spoofing samples
was referred to as the false rejection rate (FRR). The error
rate for human voice samples was referred to as the false
acceptance rate (FAR). Our binary classification models return
the score that represents the likelihood of a voice being a
spoofing sample and compute the scores for all samples in
a given evaluation set. If the given score is less than the
threshold, then the sample is judged as genuine. Otherwise, it
is judged as a spoof. There is always a trade-off between FAR
and FRR depending on a threshold value. A value at which
the FAR is equal to the FRR of a given data determines the
EER of the data for given model.

B. Inclusion or exclusion of MFM Activation

The LCNN model using MFM activation is proved to
be effective through ASVspoof competitions in 2017 and
2019 [8], [12]. We experimented with MFM activation in
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TABLE I
DEVELOPMENT EER (%) AND TEST EER (%) ON THE ASVSPOOF2019 LA AND PA DATASET. THE BASELINE MODEL INDICATES THE PARALLEL

DDWS, SEQUENTIAL DDWS, AND BC-RESMAX MODEL WITHOUT ANY MFM ACTIVATIONS IN f1 AND f2 . THE MARKS○ AND × DENOTE WHETHER
THE MFM ACTIVATION IS INCLUDED OR NOT IN THE FUNCTIONS f1 AND f2 , RESPECTIVELY.

LA
MFM Parallel DDWS Sequential DDWS BC-ResMax

Model f2 f1 position EER (Dev) EER (Eval) EER (Dev) EER (Eval) EER (Dev) EER (Eval)
baseline × × - 0.39 2.63 0.40 2.08 0.76 2.65
Test1 ○ × (a) 0.51 4.26 0.82 3.49 0.67 2.59
Test2 ○ × (b) 0.44 2.02 0.81 2.93 0.67 2.85
Test3 × ○ (a) 0.48 2.96 0.57 2.87 1.06 3.22
Test4 × ○ (b) 0.69 4.31 0.83 4.05 1.30 3.50
Test5 ○ ○ (a) 0.51 2.22 0.63 3.31 1.17 2.79
Test6 ○ ○ (b) 0.52 2.68 0.54 3.30 1.01 3.86

PA
MFM Parallel DDWS Sequential DDWS BC-ResMax

Model f2 f1 position EER (Dev) EER (Eval) EER (Dev) EER (Eval) EER (Dev) EER (Eval)
baseline × × - 0.24 0.47 0.34 0.63 0.35 0.73
Test1 ○ × (a) 0.34 0.56 0.55 0.79 0.29 0.54
Test2 ○ × (b) 0.29 0.56 0.52 0.96 0.21 0.49
Test3 × ○ (a) 0.43 0.73 0.72 0.94 0.44 0.68
Test4 × ○ (b) 0.37 0.65 0.76 1.20 0.45 0.67
Test5 ○ ○ (a) 0.23 0.59 0.53 0.77 0.32 0.55
Test6 ○ ○ (b) 0.19 0.60 0.54 0.93 0.28 0.72

our proposed block designs. In each block, two depthwise
convolutions are applied through the functions f1 and f2.
The function f1 contains a temporal depthwise convolution
followed by normalization and an activation function. The
function f2 contains a frequency depthwise convolution fol-
lowed by normalization and an activation function. Three types
of experiments were conducted in which MFM activation is
used only in f1 or only in f2, or both. In addition, the position
of the MFM layer was tested by comparing the two cases;
before and after normalization, as shown in Figure 6 (a) and
(b). By evaluating and comparing a total of 6 cases, the best-
performing model was proposed.

(a) Before Normalization (b) After Normalization

Fig. 6. MFM position.

Table I shows the performance when MFM layer is used as
the activation of each depthwise separable convolution layer.
The marks ○ and × in columns f1 and f2 indicate whether
MFM activation is included or excluded in the corresponding
functions of a model. For Parallel DDWS, the conditions for
achieving the best performance change every time, making
it difficult to determine the best case. Thus, we decide not
to use MFM with the Parallel DDWS model. The Sequential
DDWS model without MFM achieved the best performance
for all development and evaluation sets in LA and PA data.

For the BC-ResMax model, MFM activation in f2 achieved
the best-performing results in all four cases (development and
evaluation sets in LA and PA data). In three of the four
cases, the MFM performed better when it came after the
Normalization layer. Thus, our default BC-ResMax model has
MFM activation in f2 as shown in Figure 4.

C. Experimental Results

In Table II, we compared the performance of our proposed
model with the top 5 performance, including multi-model and
single model, for EER. The EER results are compared against
the top five models from each dataset; models are sorted based
on the EER in descending order. #Mo describes the number
of models used in an ensemble system. Two top-performing
single model systems are also shown at the end of each table in
italic. #Params represent the number of parameters contained
in the models. Results that are not public are denoted as
hyphens. As shown in the table, most of our proposed models
outperform other single models based on EER for both LA
and PA evaluation sets. However, the T28 model performed
better than the Sequential DDWS model in the PA data.

In the LA set, our proposed Sequential DDWS, Parallel
DDWS, and BC-ResMax models rank 3∼5th among all so-
lutions. Sequential DDWS model was the best with an EER
of 2.08%, followed by BC-ResMax with 2.59% and Parallel
DDWS with 2.63%. In the PA set, two models excluding
Sequential DDWS performed second place among the total
solutions, and the Sequential DDWS model ranked 6th with
an EER of 0.63%. Parallel DDWS model was the best with
0.47%, and the BC-ResMax model had the next best perfor-
mance with 0.49%.

The top five models with excellent performance achieved
high performance using an ensemble solution using multiple
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TABLE II
OUR MODELS PERFORMANCE ON THE ASVSPOOF 2019 DEVELOPMENT

SETS AND EVALUATION SETS. MODELS ARE SORTED BASED ON THE EER
IN A DESCENDING ORDER. OUR PROPOSED METHODS ARE IN BOLD.

SYSTEMS THAT USE A SINGLE MODEL ARE IN italic. #MO DENOTE THE
NUMBER OF MODELS USED IN AN ENSEMBLE SYSTEM. #PARAMS

REPRESENTS THE NUMBER OF PARAMETERS USED IN THE MODELS.

LA
EER EER

# Model (Dev) (Eval) #Mo # Params
1 T05 - 0.22 - -
2 T45 [12] 0.00 1.86 5 1484K
3 Sequential DDWS 0.40 2.08 1 28K
4 BC-ResMax 0.67 2.59 1 29K
5 Parallel DDWS 0.39 2.63 1 45K
6 T60 [28] 0.00 2.64 4 -
7 T24 - 3.45 - -
8 T50 0.90 3.56 - -

T45 (FFT-LCNN) 0.04 4.53 1 371K
T45 (LFCC-LCNN) 0.16 5.06 1 371K

PA
EER EER

# Model (Dev) (Eval) #Mo # Params
1 T28 - 0.39 - -
2 Parallel DDWS 0.24 0.47 1 45K
3 BC-ResMax 0.21 0.49 1 29K
4 T45 [12] 0.02 0.54 3 1113K
5 T44 [29] 0.13 0.59 5 5811K
6 Sequential DDWS 0.34 0.63 1 28K
7 T10 [30] 0.24 0.66 6 1330K
8 T24 - 0.77 - -

T28 - 0.50 1 -
T45 (CQT-LCNN) 0.80 1.23 1 371K
T44 (logspec-SENet) 0.58 1.29 1 1344K

models, while our proposed models all used a single model.
In terms of the number of model parameters, it uses a
remarkably small number of parameters compared to other
excellent models. It achieves the purpose of reducing model
complexity and reducing the amount of computation. Also,
when compared to other single models, the performance is
excellent, and the number of parameters is much smaller, so
the evaluation results in LA and PA sets show competitively
high performance.

IV. DISCUSSION

A. Voice spoofing detection in noisy environment

Recently, the Audio Deep Synthesis Detection challenge
(ADD) 2022 was hosted as a signal processing grand challenge
in the International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP) 2022. Track 1 is to build a model that
detects fake audio in noisy environments such as background
music effects and real-world noises. The fake audio used in
the ADD competition was generated by speech synthesis and
voice conversion, similar to the LA scenario from ASVspoof
2019. We participated in the ADD competition, experimenting
with our proposed DDWS and BC-ResMax with other well-
performing models. Our ensemble system achieved 23.8% of

EER, ranking 3rd among all 42 submitted systems. Our en-
semble model comprises five systems, Sequential DDWS, BC-
ResMax, LCNN [12], ResMax [31], and one more manually
derived model. This result means that our proposed DDWS
and BC-ResMax models not only have excellent performance
but also work well in noisy environments.

B. Computational cost with temporal and frequency depthwise
convolution design

Depthwise separable convolution significantly reduces the
computational cost compared to the existing convolution [20],
[24]. Using temporal and frequency depthwise convolution can
further reduce the cost of the depthwise convolution part.

Assume that we have a feature map of the size H×W×C1,
and we want to find the computational cost when a convolu-
tional layer with C2 number of filters of the kernel size k1×k2.
We consider the case when zero-padding is applied so that the
spatial dimension remains the same. For a standard convolu-
tion, the computational cost will be k1 · k2 · C1 ·H ·W · C2.

For a depthwise separable convolution, the cost of a depth-
wise convolution is k1 · k2 · C1 · H · W and the cost of a
pointwise convolution is 1 ·1 ·C1 ·H ·W ·C2, so that the total
cost will be k1 · k2 · C1 ·H ·W + C1 ·H ·W · C2.

For our DDWS convolution, the computational cost of
frequency depthwise convolution is k1 · 1 ·C1 ·H ·W , and the
cost of temporal depthwise convolution is 1 · k2 ·C1 ·H ·W .
Including a pointwise convolution, the total cost of DDWS
convolution will be (k1 + k2) ·C1 ·H ·W +C1 ·H ·W ·C2.

Therefore, if we use a depthwise separable convolution or
our DDWS convolution, we get a reduction in computation of

1

C2
+

1

k1 · k2
or

1

k2 · C2
+

1

k1 · C2
+

1

k1 · k2
,

compared to standard convolutions, respectively. In our mod-
els, we set k1 = k2 = 3 which reduces about 9 times less
computation than standard convolutions.

V. CONCLUSION

Most of the spectrogram feature-based voice spoofing detec-
tion systems are not considering frequency information very
well. Also, solutions should be designed to consider real-world
model complexity and detection latency requirements. Our
parallel DDWS, sequential DDWS, and BC-ResMax models
are designed to process temporal and frequency-wise features
separately by considering temporal depthwise convolution and
frequency depthwise convolution. Moreover, the depthwise
convolution design itself is very light, significantly decreasing
the number of parameters used in the models. Our parallel
DDWS, sequential DDWS, and BC-ResMax models used only
a single deep learning model with far fewer model parameters.
Each of these models achieved spoofing attack detection EER
of 2.63%, 2.08% and 2.59% in the LA set, and 0.63%, 0.47%
and 0.49% in the PA set, achieving comparable performance
with other top ensemble systems from the 2019 ASVspoof
competition. Furthermore, these models used only 45K, 28K,
and 29K parameters, respectively. It is a far fewer number of
parameters than existing models.
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