Il-Youp Kwak and Wuming Gong
2020-02-29
devtools::load_all('.')
library(phangorn)
library(phylosim)
library(parallel)
options(width = as.integer(system('tput cols', intern = TRUE)))
This vignettes illustrate how our team prepared a submission for subchallenge 2.
The 'txt_file' is a file path of evaluation for subchallenge 2 given from the competition. Change the like with the one you would like to predict.
txt_file <- 'Data/subC2/SubC2_TEST_data.txt'
x <- read.table(txt_file, header = FALSE, sep = ' ')
Initical state is '0', interval deletion is '-', and mutational outcome states are 'A' to 'Z'.
states <- c('0', '-', LETTERS)
Read file and save it as 'phyDat' object.
tip_names <- x[, 1]
x <- do.call('rbind', strsplit(as.character(x[, 2]), ''))
rownames(x) <- tip_names
x <- rbind(x, rep('0', ncol(x)))
rownames(x)[nrow(x)] <- 'root'
states <- states[states %in% names(table(c(x)))]
x <- x %>% phyDat(type = 'USER', levels = states)
sequence_length <- x %>% as.character() %>% ncol()
n_batch <- 1000L
k <- 2L
set.seed(1)
S <- compute_replacement_matrix(x = x, n_batch = n_batch, k = k, mc.cores = 8)
d <- dist_replacement(x, S)
tree <- d %>% fastme.bal()
write.tree(tree, 'SubC2_transition.nw')